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20. Abstract (Continued)
jperforMtce to initial conditions, measurement data rate and

accuracy, input selection, and modeling errors is investigated.

A structure identification technique is used to select the most
probardie aerodynamic model for a given data set from a group of
candidate models. In addition, actual flight test data from a
complex aerodynamically controlled vehicle is processed with
the filter algoriihm, The resultinzr identitied model is shown
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SECTION 1

I NT'O(TUCT 1 ON

BACKGRO'NI)

A major probiem during thte design of a modern high

perforrmlance Tactica] mis.-;i e is predict ng and modeling the

aerodynamic forces and moments it will expcrience. This prob-

lem is pýarticularly difficult for issies which must execute

extreme maneuvcrs to int(ercept high-p targets. The mathematical

model of the :..rtra,:)e's aerodynamic behavior is needed for

nutopilot and guralantie 2a\k design and for a preliminary

evaluation of tle missi ,.s performance. Thus, the initial

design effort normally includes many hours of wind tunnel

testing to deterimine an aerodynamic nmodel. Due to theprob-

lems of tunnt-l and mount interference, dimensional scaling,

and the reduction of the force and moment data to a suitable
analytical form, the aeredynai:.ic model] obtained may be highly

inaccurate. In additilon, the missilt, airframe configura-

tion may be mcdiivd dur-ini: the design to improve expected

performance, increase control effectiiveness, or for other en-

gineeriug reasons, Modificat ions to the aerodyniamic reprosen-

tation accounting for such changes, are often based on a limited

amount. of addi-tional wind tunnel tEsLing or on the best esti-

mat;,s of the at.rodynamic designer.

The true test of the missile simulai io, mnie! -'I ci

during the design and preliminary evaluat ion c•fl .s du' "

flight test. Postflight data processing .nve.ics:ye& on-
struction of the flight using dat a taken durin.g the test
vis'.'repancies between expected and actual ilighi behaVir•r

in nryny cases point to inaccuracies in the aerodynatmic moedel

In additi:'n, unknown oeffec[tt: such as thrus-t vector misalignment

.4
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off- nominal thrust levelI, and !- ight sensor m,.udel uncert atn.-

ties lead te additional discrepa-ncies. U'sin g th,- 1 ight t est

data to impror\e the aerodynamic md111 is a cru tIia] phase of

missile desgln which t.p3 call ISUI 'a't s in air Irame and/or

autopilot m ,udi fcalti ons to improve regions oq ctiest ionahI t

per forniatice

In t he st udy dk cumen ted hert- . a meht boi c 1 OS t flight 1:
dat a processing _s invest i gat ed whi (A; di irect 1 y addresse-s t he

airframe modeling problem. An extenoed KaImana 1 filter is (I(-

signed to estimate a variety of aerodynarnic model and measure-

ment parameters and a st ructure i dent if icat Jon, procedurc is

demon strated wlhi c.h sele tc s among candidate mo delI s A gcinera]I
P~lu:'!o- .1,x-ue~gret..-.-of -ireedom missil1e 1 l1g hit (tcs int:dc is

developed which allows flexibiliaty in sens,.er sel ection and

parameterization, as well as rapid ireprogranmiinvg to accomodate

a varietr of missile airframes.

The concept of aerodynamic model determination from

flight data has been applied with success to aircraft (Ref-

erence 1). An aircraft during flight test can be well in-

struniented with expensive and possibly redundant flight data

sensors, which can be used repeatedly. In addition, control

surface inputs can be designed which intentionally separate

complex aerodynamic elfI-cts or excite aircraft motion in a

confined flight condition. This allows relatively simple

aerodynamic models that are valid for special cases. Flight

tests can bo repeated if sensor or telemetry problems arise.

By comparison, a missile flight test program pre-

sents a more difficult aerodynamic identificalJon problem.

Because -f the cost and the destructive nature of missile

flight testing, only a relatively few flight Tests are scheduled.
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Also flight tests may have a variety of objecti7es in addition

to verifying cr determining the aerodynamic model. Thus the

freedom to exercise control surfaces for the purposes of aero-

dynariic parameter estimation may be restricted.. Since a single

missile flight will likely involve large and rapid variaticn

in flight condition, aerodynamic simplifications applying only

to rvstricted flight regions must be minimized.

The ma-or difference between missile and aircraft

aerodynamic parameter estimation methods lies in the airframe

"modeling detail required. Full six-degrees-of-freedom kir'ema-

' ti2.s along with time-varying thrust, mass, center of gravity

and inertias are modeled in order to characterize the tactical

missile throughout the operating flight regime. This modeling

* complexity along with the dcsired llexibi]ity and ge-eralit'y

of the resulting postflight data processing algorithm pl.aces

a considerable burden on the particula:r parameter estimation

algorithm used. The algorithm must be computationi1.lly effi-

cient; it must produce accurate parameter estimates in spite

of modeling uncertatinty, and user convenience must be maxi-

mized.

TECHNICAL APPROACH

The application of modern estimation methods to the

processing of measurements from complex dynamic systems has

become commonplace in many fields of engineering. In parti-

cular, the problem of system identification, or parameter esti-

- rimation, has received much attention. Given the equations

necessary to describe the dynamic process (the state equations),

the associated measurement equations, and the system and mea-

surement noise statistics, the application of modern estimation

methods is well understood (Reference 2).



It is known that if the system mathematical descrip-

tion is accurate and if the equations are linear, the Kalman

filter gives "optimal" estimates of the system states. For

this discussion, an optimal estimator is defined as one pro-

ducing lower root mean square (rms) estimation errors than

any oiher estimation technique. In addition to being an opti--
mal estimator, the Kalman filter automatically computes the

rms accuracy of its estimates.

The linearity restriction mentioned above is rarely

satisfied in realistic physical problems such as the one con-

siclered here. Thus, it is common to linearize the system

*, equations about the current system state estimates in order

to dctcrmine an "aproximately optimal" system estimate. If

the system is "nearly linear" in the region which contains

the system states and estimates, then this type of filter

provides a nearly optimal estimate. This approach, used here,

has been highly successful in a variety of engineering appli-

cations and is called the Extended Kalman Filter (EKF).

In applying the EKF to parameter identification, the

equations of motion -- i.e., the model structure -,- are assumed

to be known to within a set of uncertain parameters. The

parameter vector, e.g., the set of aerodynamic coefficients, is

distinguished from the vehicle's dynamic state vector -- posi-

tions, velocities, etc. The parameter vector is adjoined to

the dynamic state vector to form an augmented state vector.

The EKF for the augmented state can be applied in a straight-

forward manner. After measurement processing, that portion oi

the augmented state representirng the parameter vector yields

parameter estimates. Parameser estimation accuracy is obtained

from the final augmented sta;e covariance matrix.

4
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A model structure identification method is also devel-

oped and evaluated in this report. The method requires that

several candidate, structures be postulated and the defining

parameters estimated. The system models are statistically com-

pared using information stored during the course of processing

with each EKF, and the most probable system model is selected.

ORGANIZATION OF THE REPORT

This report is organized as follows: Section Ii dis-

cusses the six-degrees-of-freedom airframe dynamics and the

aerodynamic parameterization. Frequently encountered missile

flight instrumentation is described in Section III along wi.th

"the associated math models. Section IV describes the EIF, pre-

sents a partitioned form of the conventional extended Kalman

filter tailored specifically for the large-scale parameter

identification problem, and discusses the implementation of the

EKF for the airframe identification problem. Section V7 pre-

sents aerodynamic parameter estimation results obtained uti-

lizing computcr-gonerated synthet-ic measurements from a typi-

cal short range air-to-air missile. A structure identifica-

tion method is developed in Section V! and test cases are pre-

sented which demonstrate its ability to select the correct

aerodynamic model structure from a family of candidate models.

Section VII discusses an application of the identification algo-

rithm to actual flight data taken from an aerodynamically con-

trolled airframe. Section VIII summarizes the study and pre-

sents the major conclusions.
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SECTION II

THE MISSILE AIRFRAME MODEL

OVERVIEW

The generalized six-degrees-of-Ireedom missile air-.

frame model used in this effort includes 12 fundamental state V
variables:•

* Three missile inertial velocity com-
ponents iin body axes

e Three inertial npoitions tn locatethe missile center of gravity (CG)

c Three rotation rates of the body axes
with respect to inertial space

* Three Euler angles to locate the body
axes in inertial space.

A generalized aerodynamic model provides force and moment co-

efficients as a function of the following inputs-

* Angle-of-attack

* Angle-of-sideslip

* Mach number

* Control deflections

"* Inertial rotation rates

"* Anglo-of-at, tack and sideslip rates

"* Total rel.ativc' velocity magrnitude.

This model ut1lizos a Taylur'.s Serifes Ox])ptnS!nl r J t01' hro-

dynami c Iorce alld wjorrielet cool jfici cat!s, ill termsi Os 1 lit' albove



iniput variallIts. Terms uip tu 1 hi id order arecn siee

vi th appro~priit e I emrs s Id cktvd I iv considering a vzariety 0

missilv coni iguratI ionls, ats well 1 s lit ilizing the mmtiaI

nat u ri of t.he gc(rieral 1 in s i le airt'raino with respect t o a ii~-

gIc p1 atic o.) -ýrw rv (RIle freiwt 3). 'I'lie :Qcrdvnamii i oflml1nf1.s

Mare aswnlvd Lu be reicIrunIct'd to a1 I ixed pointl on tilh- ni -,;ie

,Airframe, and mrm;1- bL, 1ransýIatvd tol iaccount f'or CG I ravel

wh il1e h ruslt S ng The 1! 1 J'l L ii iMt-h1i S1 or i cs Of' t hree( k,:mp(S i t v

con tr -UI ur .1ace ciE II lct 'i qs a rcý pirk\ i docl -- Ili( p it ch, yaw

and roll co)n Prc dci I ections,. "ho _Ievel ol !Il0del 1IrII dclai il

ýissuneod is 1i vpac.1 t i t hat ind2) ot1 ih irtjctory ye.-

Th(. oa:rt j,, zo : ,umd 1lat arInd I~.nflut at Ig IJ 1() tIlw

dluratiiiii uvih 1 K a ý-;silIe Iii Jlit Ali aýtmosphelitre m(ld(,1 pj()\'icldes

de~ls 1 V 12¾1't peed0: )u~d arid 2 finrt iitl w11UJ v(.1k)CI t\

ait IUtIWon01 (11 ;tlt~uc uv I- III i I ( I light et thg
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in the engineering application of Kalman filtering methods to

account for these known (and sometimes unknown) model details

by a'ss,:ming random inputs (process noise) to the dynamic equa-

tions; of motion. To this end, six additional random states are

added th- ehp 12 iundamental airframe states. These can be used

to repr,.sent modeling uncertainties such as bending effects,

unsic ady aerodynamics, wind gusts, or control deflection mea-

surement errors. Three random force states and three random

toment states are modeled. The rms magnitude and bandwidth

for each disturbance state are required inputs to describe

these randoim elfects.

COORDINATE .A.ES A.ND NOTATION

Two coordinate frames are used frequently in the

missile airframe model; These are an inertial frame and a

missile bocd-fixed irame. The direction cosine matrix com-

I:,uted from an approlria2te set of Euler angles provides the

necessary transformation between frames. Superscripts I

(inertial frame) and B (body frame) are used to indicate the

particular frame associated with the coordinates of a given

vector,

The inertial coordinate frame assumes a flat non-

rot-,ting, earth and is fixed at launch. The origin of the

1-iramc jis ]cc: ted on the surface of the earth below the

launch point (I4wre I). The x and y inertial directions

are horizoital whx~e the z axis is down. The x axis is

oriented in the downrange direction while y is crossrange

to thc right. Note that altitude is in the negative z di-

rection in this set of cooirdinates.

:IS
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Figure 1. Inertial and Body Coordinate Systems

The body coordinate frame is located alonf principal

body axes; i.e., all cross products of inertia are zero (Fig-

ure 1). The x-axis is along the centerline positive forward.

The y-and z-axis define the missile control planes' i.e.

missile control commands are given in the x-z plare (pilch

plane) and the x-y plane (yaw plane). The o.igiz oi h,

body irame is the missile CG.

The traiisformation betlween inertia] aid body axes

is accomplished via the direction cosinc transformation.

This transformation is defined in terms oi three Euler angles,

9
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Certain notation conventions used in the missile model

0 Al 1 't~cto-r~z arc underscored

0 A dot oVCI' aI LuLintity indicates its-:
t~ot~al tLinie-derivative

SLiemen-ts of a %ocetor are subscriptedI
hr t~he nppropriato index. i e. .. iv- is
thie tLhird component of the vector iN



0 A "x" between two three-element vectors
represents the cross product, i.e.,
w x _D

.* The cross product equivalent matrix
w,' is given by

0 -w W1
31

SThe quantity will be used to repre-
sent the gravity vector in inertial coor-
dinates, i.e.,

1 [01

"0 • The direction cosine transformation
relating the I-- and B-frames is given
by CY where, for example

VB.= C B v I
, _- CI _

Thus CB transforms vectors from the I- to the B-frame. The
I

inverse of CB will be designated CB so that

v I =CI vB
B--

MISSILE EQUATIOT1S OF MOTION

The nonlinear differential equations which rnut be

propagated to determine the 12 fundamental mi1.i1C :÷.aret

consist of the four interrelated threc-elemenwr veccor -qlua-

tions summarized below:

SB _QACf fT- -+ C g IV - w x v -4- r1 :3
X-- m + l .. .. ~

I, _ = B 2I)

IL- 2



* (1 1

C~ 2 )w ~..I QADC Mg C - W2 (wIy-I)'

/ dil IW- + ,.sinqy w, + cos,ýb w,) tanO
17(3)

c COS•t w9 - sine w,' (4)

~ \\ .siV• w2 + costý w3 )/cos6

Tn-e I. sides of thes;e four equations represent the deriva-

tives tol the 12 fundamenTal, missile states, defined as follows:

v missile velocity with respect to iner-
tial space in body axes

r-. ..... ile C', nnitAion vector in inertial

v; missile rotation rates with respect to

in-ertial space always understood to be
expx-(essnd in body coordinates

v •a vector made up of the three Euler
angles which locate the body axes orienta-
tion %ith respect to inertial space.

The following symbols are used above and will be further de-

fined in subsequent subsections:

( = dynamic pressure
i A = acrodynamic reference area

C -aerodynamic force coefficients

m ma s.s

-T thrust vector in body axes

r, = acceleralton perturbation input

IN = inertia matrix containing inertias I 7,ly

3.2 ___



D = aerodynamic reference length

Cm = aerodynamic moment coefficients

LE = vector from aerodynamic reference
point to the COC

mT = thrust moment vector

r =perturbation moment vector

The right side of Equation I includes the summation of

all forces acting on the missile. The five terms on the right

side of the equation, from left to right, represent the follow-

ing:

* Aerodynamic forces in body axes

* Thrust forces in body axes

* Projection of gravity onto body axes

* Coriolis contributions

* Random perturbation effects.

Equation 2 defines the rate of change of missile

inertia] position as the transformation of the body-referenced
B

velocity vB. The right side of Equation 3 represents the sum-

mation of all moments acting on the airframe. The quantity

[I NI is the diagonal inertia matrix; the five terms included

within the braces in Equation 3, from left to ritg.ht, represent

the following:

* Aerodynamic moments about the body-fixed
aerodynamic refcrence point

* Aerodynamic moment translation to CO.
I ocat ion

* Thrust momelnt aibout the CO

I0I



* G'yroscopic coupling terms '

0 Random moment perturbaiion terms. I
Equation 4 represents the dy.namic.s of the Luler angle •t is

these equatlionzs are derived in Reference 4.

THRUST AND MASS MODELS

The analytical expressions for aerodynumic and thrust

forces and moments are in some cases highly airframe-specific.

Thus, the general purpose airframe model proposed here may .no.

be applicable ii all ca~-es. Nevertheless, lhero is consider-

able commonality between the majority of missile airframe

models s-o thvi few changes will be necessary to represent a

varifet of airframe types.

Variations among differenl missile airframes are

seliUrated into two categories,

a Thrust-mass characteri•;Los

a Aerodynamic representation.

The time-varying thrust and mass charactL*ristiu.- of

an arbitrary missile are fundamentally related. The natur(, of

this relationship is used here to minimize the inputs required

to define a specific missile configuration.

A missile thrust versus time profile at sea level is

assumed in tabular form. Linear interpolatioii provides a

continuous sea level IhrUsI (T t ime-histuor". The mass
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The moments of inertia and CG travel are computed in a similar

inanner.

Sea level thrust is corrected to account for altitude

variatiohs using the exhaust gas exit (a ). The resulting

thrust at altitude T is given by

T T I sl'+ (PO - p(alt)) aEx (6)

where

10 = sea level reference pressure
(2116 ]b/sq ft)

p(alt) = actual pressure altitude from the
atmccmhere model*

The primary thrust direction is along the positive

body x-axis. Thrust vector wisalignments and/or thrust vector

control produce lateral forces and thrust moments. The model

presented here accounts for thrust misalignment but does not

explicitly consider thrust vector controls (TVC). Note that

TVC and thrust misa]ignments are modeled in a similar manner,

so that the framework for a TVC model is included.

Figure 2 shows a planar representation of the

thrust moment effects. Note the body axes are assumed fixed
at the missile CG which may be located arbitarily with respectt to the geonot-,ric missile centerline. The point of thrust

attachment to the missile airframe, as well as the aerodynamic

reference point, are assumed to be fixed along the missile

geometric centerline. The vector S gives t-he CG travel from

the stationary aerodynamic reference point. The LE vector

The 1962 ARDC reference atmosphere is assumed in this study.

I1
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Figure 2. Planar Thrust Misalignment and
CG Travel Diagram

points towards the CG and is specified in body axes. The

thrust attachment point along the geometric centerline s

referenced from the aerodynamic reference point. The vari-

able TAP indicates the distance from the aerodynamic reference

point to the thrust attachment point; the positive direction

is indicated in Figure 2.

Sia -ma an-ular thrust vector misalignments c and c

are considered as p",sitive thrust rotations about the y and

z body axes. The thrust vector in body axes is given by,

(7)

A vector from the CG position to the thrust atlacIhnK)l point is

given by,

/-TAP - cgx\
rETAP= - CgV (•)

- cgz

17
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for winged missiles with a dominant single plane of symmetry.

For these vehicles sideslip is controlled to be small and this

fact often simplifies the mathematical representation of
the yaw plane aerodynamic model.

For missiles with two planes of symmetry, e.g. , cru- •

ciform missiles. aerodynamics ar-e frequently modeled as func-

tions of aerodynamic roll and. total angle-of-attack aT.

This permits the use of Ihe. known vehicle syimmetrv to sni)plify

the aerodynamic representation (References 5 and 6).

Angle-of-attack and sideslip are sometimes required

to be Eulier angles relating tOe body axeO., Ito a "wvind axes'

system-- .c. , a coordinate system with one axis along the

relative velocity direction. In this case,a and a are defined
by:

ac t a n (v/ (

D' r 2 sVm- (12)

where

"rm +A2 + 2 1/2 (13)3 r I r2

The angle-of-attack and sideslip can be used to

characterize the aerodynamics of missiles with both single

and dual plane oi symmetry. This more general formulation

is adopted here. Nevertheless, it is recogniztec -hat in

special cases the (a 7 , %) representation may lead to reduc'ed

order parameterizations and Lhus nmore efficienlt p]aramui(.,r

idontification.



An alternate definition of sideslip is frequently

used in missile modeling where the "wind axes" are rarely

required. This definition is used here and is given by,

-I

tan (Vr /v) (14)

This sideslip definition does not result in an Euler angle

set. The similarity between the a and 6 computations of Equa-

tion,:, 11 and 14 allows some simplification of the aerodynamic

model for cruciform missiles.

A generalized missile model in a and > cannot assume

$ small. In many cases a and F> m.ay be equally large. Never-

theless the assumption of at least one plane of symmetry ---

the xz plane -- will be used to simplify the aerodynamic model.

The model given here assumes all aerodynamic forces

and moments to be linear in mach number about some reference

value, I . This assumption limits the region of applicability

of the model to flight segments where Mach variations are small.
The speed of sound vN is required for the computation ofs
mach number Mv. The speed of sound is computed as a function

of missile altitude. Mach number is given by:

S- Vm/V s (15)

Both aerodynamic forces and moments are assumed proportional

to dynamic pressure Q.

Q Pv /2

where the atmospheric density • is computed as a function of

alt.itude from the atmosphere model. In addition, the aero-



I
dynamic force in Equation I is proportional to some specified

reference area A while the aerodynamic moments (Equation 3)

are proportional to the product of reference area and reference
distance, AD.

In addition to a, 6, and M the aerodynamic coefficients

are functions of the aerodynamic control surface deflections.

Missile control surface deflections are commonly governed by

three independent commands. These commands are designed to

produce torques about the three body axes thus achieving con-

trol in pitch, yaw, and roll. The pitch, yaw, and roll con-

trol deflections are required by the generalized model pre- I
sent~ed here.

Measurement of control surface deflection requires

instrumentation of actuator response -- a measurement fre-

quently not required for operational missile configurations.

In some cases actuator response measurements may riot be

available or may be impractical. A more easily obtained mea-

surement is the control- surface command which results from

the autopilot subsystem. These commands are related to the

actual deflections through the actuator dynamics. Actuator

dynamics are typically wide bandwidth with reýpeoct to

the dominant airframe frequency response, and thus may be
ignored in some cases. If control surface command rather

than actual actuator response is used to model ithe airframe

input., the effects of actuator dynamic lag should be investi- I
gated. This can be complicated since actuator lags may in-

volve calculation of aerodynamic hinge moments, detailed motor

modeling and/or hydraulic servo mode]. The model uresented

here assumes that measurements of actual control deflections
are avvilable.



modeingSix independent variables required for aerodynamic
modeinghave been described thus far -- angle-of-attack,

side.slip, mach number, and three control deflections. These

quantities define the static behavior of the aerodynamics,

i.e., a vehicle fixed with respect to the airflow will ex-

perience forces and moments as functions of these quantities.

Most wind tunnel studies provide only static empirical force

and moment relationships, Additional dynamic forces and

moments arise as a result of t~he tirne-variantion of the air-

frmate with respect to the airflow.

The dynamic aerodynamic effects are often computed
4:a1tially using theoretical aerodynamic concepts. Dynamic

wxa rd tunnel t est ing met hods are somet iimes, 11od (1cerence 7). 'l

nmIos T common dynamic terms considered are the aerodynamic damp-

in~g moments. In addition, magnus terms are sometimes added

which c-ouple the pitch and yawv aerodynamics when rolD rates
exist. The additional variables required to represent the

dvynamic terms; are missile rotation rates -- p q arid r represent-
ijug rotation rates about body %-- ,y- _and z-axes, respectively -

a as Z ' a.d r, 1I Th,- -n;andard no-rmui iz ingv factor D/2v
ib usL-d to normal ize the dynamic aferodynamic terms.

Ageneralized mathematical model -in the loin: (-J TaylorII

series c2.pansions relates the 32 independent variables to ithe

tY)r~i ol tline-invariant paramneters in order to make use of

Iparamcterv identli Ilicortin methods. The complete aerodynamic

mr~dcl is given by Tables 1,1throughi 5.



TABLE 2. AERODYNAMIC FORCE COEFFICIENTS
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SECTION III I
MISSILE FLIGHT TEST MEASUREMENTS

Data taken during the course of mis~sile flight tez-

ing for the purpose of post flight analysis include ground-

based missile position tracking data and telemetry record.-.

from signals generated onboard the missile. The potential

measurements available and their mathematical models are

discussed in this section. During data procecsing all me•.bure-*

ments Pre assumed discrete with a constant data rate.

ACCELERATION MEASUREMENTS

Three body--fixed accelerometers are assumed to pro-

vide specific force measurements along the body x-., y-, and z-

axes. These sensors are typically located near the r Vo1,. uf

the missile and thus also sense the effects of body rtatlo•i-z.

They are likely to be "control quality" accelerometers sub-

ject to large biases, scale factor uncertainty, and nois-..

The accelerometer measurement is modeled by
la It

S[I+FE + wx(wxr ) + xr + (1+) +

where

a = measured acceleration-in
f = aerodynamic force vector-a
ft = thrust force vector

=' - missile rotation rate

r = sensor location with respect to the
-s aerodynamic referencc point, in body vxes S°



ii
•a =¢accelerometer measurement noise

ba = accelerometer bias error

I = unit identity matrix

SFE = diagonal matrix containing accelerometer
a scale factor errors

Ii

II

RATE GYRO MEASURE•,ENTS

Three body fixed rate gyros are assumed. Rate gyros

used in missile control are subject -to bias errors, scale

factor errors and acceleration sensitive errors. The rate
gyro model used is given by

- [ -+SFE -I + [ASE] -g -g (

where

w m = rate gyro measurement

SFE =diagonal matrix containing rate gyro
Sg scale factor errors

b gyro bias drift error-g

[PSE] 3x3 matrix of acceleration sensitive
drift errors

a. acceleration in body axes at gyro
S- location

accelerometer white measurement noise
lg

!;• TLhi. gyro and ac'ý.elerometer instrument packages are located at

app~rc.•x:ina".ely the same location, so that

-a it B I •a -• _•)+ _~ (19))
--- C-" f wx(wxr wxr

2 - -



ANGLE-OF-ATTACK AND SIDESLIP MEASUREMENTS

Knowledge of the relationship between the angle-of-

attack and sideslip and the missile dynamic response is the

key to determining the analytical model for the aerodynamic

forces and moments. In some cases, angle-of-attack and side-

slip can be determined implicitly using the accel-rometer and

gyro sensors. Alternately, the angle-of-attack and sideslip

may be measured explicitly using the appropriate sensors. Ac-

celerometers and gyros measure missile characteristics with

respect to inertial space, whereas angle-of-attack and side-

slip are functions of the relative velocity. If significant

wind is present, the accelerometers and gyros may not provide

sufficient angle-of-attack and sideslin accuracy.

For missile flight tests, the a-ý sensor consists of

a boom projecting ahead of the missile into the free airstream,

beyond possible interference with the detached shock wave.

Two wind vanes are attached to the boom and allowed rotational

freedom in orthogonal planes (Reference 8). The vanes remain

aligned with the relative airflow; thus the vane angles mea-

sured with respect to the fixed boom provide an indication of

the angle-of-attack and sideslip at the missile nose. Mea-

surement lags result because of vane inerti.as and rotational

friction.

Various attempts have been mad® to calibrate a-ý sen-.

sors by inflight calibration methods (Ihuferences 9 and 10).

These studies indicate poor agreement between manufacturer's

calibration results and inflight verification, as well as

large discrepancies in the predicted sensor lags. Conse-

quently, effective use of the a-B sensor may require identi-

fication of a variety of sensor parameters.

27U



The a and 8 required within the aerodynamic model

discussed in Section II are derived from the relative velocity

at the missile CG. The a and a as measured at the missile

nose will include the effects of missile rotations with re-
spect to the airstream. Consider the following example:

Missile velocity = 1200 ft/sec

Pitch rotation rate = 4 rad/sec

a-ý sensor to CG distance = 3 ft

Angle-of-attack at CG 0

A discrepancy in angle-of-attack at the CG and angle-of-attack

at the nose of 0.01 radian (0.56 degree) results. Failure to

accurately model this effect may account for the in-flight

calibration difficulties encountered by the referenced studies.
In addition, a-ý booms must be calibrated to account for bend-
ing under load (Reference 7), and they may lead to perturba-

tions of the uninstrumented aerodynamics.

Based upon the above consideration, the following model

can be used to approximate the a-S sensor output:

B -B
V

x

w rB

6B B +21)
v
x

2.
S2 aL + 2; w L+ O'L a (22)

W2 L+ 2L + •L 6B (23)

(l+SFE )aL + ba + (24)

(1+SFE)L + b + (25)
a• .L



where

aBB P= ang)e-of-attack and sideslip at

nose boom

r= distance from CG to nose boom

'aBL = dynamic response of a-B sensor

W a, = natural frequency of a-6 sensor

= damping ratio of a-B sensor

am,•m = a-B sensor measurements

SFEa ,SFE = a-B sensor scale factor errors

b ,b = a-B sensor bias errors

ftr = wide bandwidth noise on a-B sensor
s eau-rceni-n B ant

RANGE AND ATTITUDE SENSOR MEASUREMENTS

Several sensors can provide missile range and atti-

tude information. An inertial reference unit (IRU), the on-

board seeker, and remote radar and theodolite ranging are

discussed here.

An inertial reference unit consists of a package of

precision accelerometers and gyros which provide missile posi-

tion and attitude with respect to inertial space. Becauseof cost,

only the longer ra.nge tactical missiles have an operational

requirement for an IRU. Nevertheless an IRT may be provided

as part of the flight test instrumentation. Position and

attitude measurements from an IRU are subject to low frequency

drift as a result of initial alignment errors and instrument

biases. The IRU position drifts may be considerably larger

than the radar position uncertainty. By correlating the radar

range data with the IRU data, postflight IRU calibration

29



can be performed, resulting in estimates of instrument biases,

scale factor errors, instrument nonorthogonalities, and ini-

tial alignments errors -- along with an optimal estimate of

the missile trajectory and attitude time-history. This pr-o-

cedure can be performed using modern estimation methods

without a detailed missile airframe simulation. The incl'i-

sion of the postflight IRU calibration within the airframe

identification algorithm is not required; however the capabil-

ity of using the results from such an effort is provided.

Miissile test ranges may utilize a variety of radars

* spaced along the missile ground track during a test flight.

In addition phototheodolite sensors may be available to pro-

vide highl-% acu. . ation ranging. Piecing. t,..

.-the various radar and/or theodolite measurements is a post-

flight smoothing problem which must include detailed radar and

theodolite error models: however, again an airframe model

(Reference 11) is not required.

The missile inertial position estimates from combina-

tions of radar, theodolite and IRU measurements will be con-

sidered as potentially available for the airfrairje identifica-

tion problem. The measurements are modeled as; follows:

r = rI + r (26)
-m - r

where

measured missile position vector--m

uncorrelated position measurement error

Modern filter.ingismoothing methods frequently used

for postflight trajectory generation provide not only trajec-

Tory estimates but position error statistics (i.e., the .stn-

tistics of r , a as well. Such data will interlfice directly

with the method used in ihis .study.
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As indicatud above, missile attitude can be obtained

from the IRU. Attitude information may also bh inferred from

an onboard seeker. During a missile guidance flight test an

operationally required onboard seeker may be used to track a

target. In some cases the test target is fixed to the ground.

During such a test the seeker attitude in body coordinates to.-

ge'ther with the target location provides a measure of missile

attitude in inertial space. The attitude information and

uncertainties from this measurement are highly seeker specific.

Errors due to seeker gimbal dynamics, radome aberration

effects and onboard signal p ssing must be investigated.

These effects may be modeled using process and/or measure-

ment noise.

Missile attitude information from an onboard IRU or

seeker is modeled here by an Euler angle measurement,

= v + (27)

where

v = Euler angle measurement--m

uncorrelated angle measurement noise

This model assumes that IRU and seeker data reduction is per-

formed separately, with the resulting attitude and attitude

uncertainties stored for ',se with the identification algori-im.

I'
m'



SECTION IV

THE EXTENDED KALMAN FILTER FOR
PARAMETER IDENTIFICATION

The extended Kalman filter is an extension of optimal

(minimum-variance) linear filtering theory -o problems which

involve nonlinear dynamics and measurements, e.g., the aerody-

namic coefficient estimation task. This section provides the

background needed for understanding the EKF algorithm developed

in this study. The discussion assumes a basic familiarity

with r,.t.dom variables and state-space notat on; additional

de't-,ils7 can ho found in Reference 2.

KALMAN FILTER EQUATIONS

To apply Kalmnin filtering theory to any estimation

pr.blem, it is nccessiry to derive a linear, first-order,

vector dificrential equation which models the manner in which

the system states interact and propagate as tune.ions of

time. For linear systems>, this equation has the genera) form

:k() E ýt)x(t) + G(t)w(t) + u(t) (28)

WWz'v x(t) is an t-1 column vector representing the system

state, Y(i) is- an nxmn dynamics matrix which defines the

*Some overlap in symbol usage exists between this s.ection and
Seclions I1 and 111. The notition in this section is stan-
dardized in Relerence 2, to which the reader can refer for
further details.



interaction of the state vector components, and w(t) is a pyl1

column vector of white gaussian noise inputs such that*

Etw(t)] 0, Coyvfw] E[w(t)w(r)T] = Q(t),(t-T) (29)

The matrix G(t) is an nxp distribution matrix which indicates

how each component of w(t) affects each component of the sys-

tern state derivative, and u(t) is a nxI column vector of known

system inputs. Note that the F, G, and Q matrices may be

time-varying. For a missile airframe model, the elements of

the state vector x will typically be missile positions and

velocities; the elements of w will be random inputs such as
airstream turbulence; and the elements of u will be known

inputs such as missile control surface deflcctions.

At discrete instants of time tk it is assumed that

measurements of linear combinations of the state variables

are made. The equation describing this measurement process

has the general form

7. = " + v, (30)-k hkk -- B

where Z. is a vector of r measured quantities at time tk, Hk

is an rxn observation matrix describing the linear combina-

tions of state variables which comprise zk in the absence of

noise, and vk is an r-vecLor of zero mean gaussian measure-

ment errors with a covariance matrix Rk defirned by,

E[kf T] (31)
k4E ILkij = Rk k =31)

*The symbol E[ [ denotes mathematical expceiation; Cov[w]
denotE.ý the covariance matrix of 'w.
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At any time t, the objective of optimal estimation

theory is to process all the measurements taken up to that

time and produce an estimate x(t) of the system state x(t)

having minimum error, in a statistical sense. The optimiza-

tion criterion most often chosen is that of minimizing the

mean square estimation error. The minimum mean-square error

estimate is calculated with the Kalman filtering algorithm.

As measurements become available, there is an instan-

taneous change in the knowledge of the state x(tk). Denoting

the optimum estimate of X(tk) just prior to the availability

of a •s and the optimum estimate of the state vector
immediately .after processing zk s P x+), the Kalman filter I:

generates the ,ptimum estimate of the svslem state according

to the following ,dlgorithm:*

•(t =F(t) (t) + _u (t) ; _(tk ) k ( ) (32) •r.

xk(•) = -k Kk ,_k - rkXk(-) (33)

where Eq. 4.1-5 is used to calculate the estimate between

measurements and Eq. 4.1-6 is used to update the estimate

when new data is received at each time t

The quantity in brackets in Equation 33 is known as

the measurement residual rk. This vector quantity is the

d;ui-i.ncQ betweer the actual measurement zk and the optimal

estimate of ihfc n:,-asurement Hkik(-). An important attribute

of the Kalman filter is the whit.nin& of the residual process.

It can be shown that a Kalman filter produces a residual proc-

ess r k such that

*Only the continuous form of the Kalman filter with discrete
measurements is considered here.
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In addition it is known that

Cov HR ]k [ukPi(-)H~ +R
The "whiteness" of the residual process and the consistency

of the residual magnitudes with the predicted residual stand-

ard derivation is an excellent test for proper filter behavior.

The nxr matrix K. is the Kalman gain mati'ix. Let
k

x(t) denotte the error made in estimating x(t), e.

_R(t) 5 _ft) -x(t) (34)

and let

P(t) =Cov[ (t)] E i(t)-k(t) T] (33)

The gain matrix KR is then computed using the following equxtions:

P(t) = F(t)P(t) + P(t)F(t)T + G(t)Q(t)G(t)T (36)

with P(tkl) Fk(i 4.) and

KkH + RJ- (37)

P () I- KkyiJPk(-) (38) -

where Pk(-) is P(t) just before the measurement at time tk

and Pk(+) is P(t) just after t'k, Equation 36 is used to

calculate the estimation error covariance between the measure-

ments; Equations 37 and 38 are used to calculate the Kalman



gain matrix for use in Equation 33 and to update the estima-

tion error covariance matrix when a measurement arrives.

Figure 3 illustrates the procedure for processingI
measurements with the Kalman filter. The algorithm, has two

distinct phases. Equations 32 and 36 describe the time evolu-

tion of the state estimate and its erro~r statistics between

measurements under the influence of system dynamics and noi~se.

This process is commonly referred to as extrapolation. Equa-

tions 33. 37, and 38 indicate how the estimate and its error

covariance are updated at the measurement time to reflect the

new information available. The algorithm is optimum in the

minimum mean-square error sense as long as the assumed math-

ematical model for the system is accurate.

INITAL ETIMAIONCALCULATION OF
ENRTI COEATIMATION ESTIMAIION ERROR

ERORCOARANECOVARIANCE, t]AN
P (to) KALMAN GAINS, K~t

STATE VARIABLE K(I)
MQDEL OF SYSTEM

iri

MEASUREMENTI t
DATA COMPUTATION STATE

OF STATE VARIABLE
WINTIAL STAT6 ESTIMATE ESTIMATES

VARIABLE ESTIMATEm .

Figure? 3. Mueasurement Processing with
the Kalman Filter

A unique feature of the Kalman filter is that a mea-

sure of the estimation accuracy is automatically provided by

the algorithm. The matrix P(t) Is a complete description

of the error statistics of the estimate. In paiticular, the

square roots of the diagonal terms of P(t) represent the



I
standard deviations of the error obtained in estimating the
components of x(t)-. Note that P(t) is specified for all time

by Equations 3G, 37 and 38. Thus estimation accuracy and the
Ralman gains can be precomputed independently of the measure-
Ment sequence zr.

In summary, the following conditions miust be met to
implement an optimum Kalman filter:

0 The system must. be linear

* The matrices F(t), G(t), and u(t) must
be known functions of time

• The vector input w(t) must be a gaussLan
witýo noise process with known covariance
matrix, Q(t)6(t-T), and zero mean

0 The measurements must obey Equation 30,
and -1k must be known for all k

• The measurement errors vk must be a
gaussian white seq.uence with covari-
ance niatrix Rf and zero mean

0 To initialize the filter equations,
the initial statistics of x must be
known.

If the missile airframe identification problem could
be put inxo a form which mct all of the conditions listed

above, the design of an optimal estimator would involve only

the direct implementation of the Kalman filter equations.

however, the airframe dynami,_-7 and measurements considered

here are nonlinear; the linearity requirement is violated.

Furthermore, the objective of estimating the uncertain aero-

dynamic coefficients, which is tantamount to estimating pa-

rameters of the matri-k F in Equation 28, introduces additional.

nonlinearity. One means ol overcoming these problems is the

extended Kalman filter described in the next subsection.

'1 7



EXTENDED KALMAN FILTER EQUATIONS

Since the problem under consideration cannot be

realistically modeled as a linear system, a nonlinear estima-

tion technique must be used. The method selected here is the

extended Kalman filter. The latter is essentially a conven--

tional Kalmar filter design applied -to a mathematical model

obtained by lineariz.ing the system about the ctrrent state

estimate. ThE structure of this algorithm is illustrated in n

Figure 4. Note that., bec,,..us-e of the linearizatioun proce-

dure, the covariance calculatic'n i.v now dependent upon the

state estimr.ne. Consequently, .t is not possible to precom-

pute the cov'V--ianoe mc trix and Kalman gjins, as functions of

time, since they are dependunt upon the easurenent d'al a. 'T h

extended. Kalman filter yieldi& very nearly opiimal estilnates

if the linearization is acc'arate, i.e., as long an the state

estimate is close to the true system ,Ltate.

INITIAL ESTIMATION ESTIMATIOL E ,,) Oir'E, IZA ON OP-

ERROR COVARIANCE- COýVARIANCE P it) AND 00"~ , TMAU
Plt) KALMAN GAIN K"I S "A : I

STATE VAFIlABLE:
MODEL OF K(fl

NON INEAR SYSTEMl

DATA ISAS"-''/ COM~PUTATION ST Al E

| OF ',(A'Tr--,-- VARIABLE

INIIIAL STALE L ESTIMATE ESTIMATES

VARIABLE ESTIMATE

Fikure 4 Structure of in Extended Kalman Yilter

V
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A reasonably general mathematical model for nonlinear

stochastic systems is given by the equations

x(t.) r .fix(t), t] + G(t)w(t) (39)

-4 + V, k 1,2 ....

zk h kv~kJ k' (40)

where f and h are nonlinear differentiable functions of the

state vector x, and w(t) and vk are zero mean, independent

gaussian white noise processes having spectral density and

covariance matrices Q(t) and R , respectively. The measure-

ments zk are taken at discrete times tk.

The first approach one might usc to derive a filter--

ing algorithm for x(t) in Equalion 39 is Io linearize the non-

linear functions f and h about an appropriate known refer-

ence trajectory x(t ), and then apply conventional linear

estimation theory, i.e., the Kalman filter dis:,cussed in the

last subsection. Thus, denoting x(tk) by xR, the expressions

f(x. t) a f(x. t) + (x-x) (41)

x=x

Th
Lk -XX) h -k(k ) (x -xk ) (42)

may; be substituted into Equatiions 39 and 401 tu, A,.! 11

corresponding Kalman filter whi estimzt ,:5 .[ ,- t,, '.if i" x

from the rel .rence trajjeclory. When tht U e, i , iraj( e-toj-\

is chos•n to be the clurr-ent best estinult, ol l,% sta•t , e ()

the resulting aigorithUn is known as, an extvcn,.id Kalni;ui Ii 1 ,r

(EK )' ) the mtochanization equatiollns fu.tr the l ttl" 1 -c ' areg' vtn
in Tlable. C (see also 2iteereu.ce 2).
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IMPLEMENTATION CONSIDERATIONS

THE PARTITIONED FORM

The application of the EKF to parameter identifica-

lion is straightforward. An augmented state is defined as I

where x is the dynamic state vector and a is the uncertain

parameter vector. The required first order differential
equation for x is given by

I ( x s ( t ) , z' t )a [G w ( t
F--]-- - (45)-L La 0 0o

For large state vectors the primary computational

burden of the EKF is in the propagation of the state co'ari-

a•nce beit•wcen measurements (Equation 36). As an example, con-

sider an airframe parameter estimation problem containing 50

parameters and 18 dynamic states. For this sample case the

augmented state is of length 68. The augmented state covari-

ance matrix will have 2346 unique elements. Thus an extended

Kalman filzer for a state of order 68 would have to numerically

integrate 2346 + 68 = 2414 scalar equations.

The numerical integration burden can I,- reduu(,d Us,

partitioning the augmented state covariance maitrj% into a

*An nxn symmetric covariance matrix contains n(n+1)/2 unique
elements.



dynamic state covariance P a parumetjer covariance P
and the state-parameter "cross covariance" Ps The aug-,am
mented state covariance P is given by

P ,P
|S sa

P T
sa I aa

The resulting equations become

S ! p + ps fT + f pT + p fT + GQQT (-)" -N S ss Ss -x -A sa sa -fa

P = P ] + f P (..7)
sa -x a -a aa

aa

where elements 01 tih matrices and f are givezn by,

D -x

•) I ( s a , t )

ij aa.

Note that the parameter covariance P is constant between
aa

measurements and thus requires no integration. For the 50--

parameter, 18-state example the numerical integration require-

ments are now 1089 scalar equations, or a savings of over 50

percenf.



PARTIAL DERIVATIVES

Four partial derivative matrices are required by

the partitioned foxm of the EKF.

* Partials of dynamic state derivatives
with respect to dynamic states fX"

* Partials of dynamic state derivatives
with respect to parameters f--a

* Partials of measurements with respect
to state

* Partials of measurements with respect
to parameters h--a

These partial derivatives are computed analytically

during the course of the numerical irtegration. Conventional

though tedious algebraic methods are used in the derivation

of these equations. Because of the required generality of the

resulting filtering algorithmno simplifying assumptions were

made.

In addition to the analytic partial derivatives, a

numerical partial derivative calculavion has been utilized.

The latter is useful for two reasons. First, it offers an

independent verification of the analytic partial derivatives,

and second it can provide an indication of the linearity of

the dynamic equations in a region about the augmented state

estimate.

The numerical partial derivative is based upon a two

sided perturbation of the function to be differentiated -- i.e.,

both plus and minus perturbations are used. The perturbation

step size is determined based on the standard deviation of

the dynamic state or parameter with respect to which the deri-
vative is to be taken. Thus linearity of the dynamics in ai
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statistically defined region about the state and parameter

estimate is assumed in the calculation of the numerical par-

tial derivacives, Recall that accurate linearization is

one of the fundamental assumptions required in order for the

EKF to be a near-optimal estimator. Thus correlation between

the analytical and numerical partial derivative calculations

provides both an indication of the correctness of the analy-

tical partials as well as providing a necessary condition for

optimality of the EKF parameter estimates.

IDENTIFICATION OPTIONS

In the most general from oI the mi.:ssi ih-ode3 pre-

sented in Sections II and III there are 22 dynamic states. 14

measurements, and approximately 150 parameters to be estimated.

A summary of the quantities contained in each of these cate-

gories is given in Table 7. The filtering algorithm is

structured so as to allow subsets of the most general case to

be exercised with particular attention given to allowing a
flexihle parameter set. The aerodynamic parameters are im-

plemented so that particular parameters may be selected for

estimation while the remainder may be fixed at preset values.

It is anticipated that less than 50 parameters will be esti-

mated at one time for any particular case.

Certain options are available which reduce the com-

putational burden during the calculation of the analytical

partial derivatives. These options are listed in Table S.

COMPUTATIONAL F.EQU IREMENTS

The present algorithm is coded in FORTRAM IV and

implemented in single precision in an IBM 360/145 computer.

Core requirements are approximately 340K IBM 360 bytes based



TA :7. DYNAMIC STA-ILS, MEASUREMENTS AND PARlAMETERS

NO. DESCRIPTION

M :issile Veo vin:Body Axes

Missle osiionin Inertial Axes

dsie EurAn~gles
13-2 M -s :; L e ".2ce~lerat~ion Perturbar -- n Comntonewc s

i:3-1M i.ais i Ie Momen Pei-turuoaTion Cornponents
19D-20 *a Sensor Dynamic tates

21-22 * DySen ~ ii : States

Measurpmenis

2-.* i9odv Fl. ýd Ac.ce1 rorneters
-t-.~ Bc'v F~.d 4t C' s

7~~ e.- n~ s r.) r

9-11 P si~ti~on 'Measux-erents

1 Po 1~ 1a Attitud~e Mceasuraments

S- .01 terodlyntamic Ffor*-e Coefficients
-11 I C 0 -arodynami.,- Momnent Coeffi c i.en t s
1-103 Wind Bias Unt~ertainzv

Atnmospneric DensilYv Uncertaintv
135-.0G *Thrus-v \hsiF)~nrne':t

107 * 'I nrust Bas
108 * Mass tUnoerzaý:irty'

*0-Il Mome n s of Inertia,
2:12-1:1.4 * CG 1,catrions
11 1l. 7* PerTurba z.,cn Fc'r-ce Time Constant:
Ila--! 20* Pel'turbsilion Nloment Time Constant
2211- 1:2 -' Perl~urbat ion oc Scale F-aztror
1212.G* Perturb3T ~on Moment Scait. Factor

'z 7- 1.2 9A~cerclone~ie Pi.?.s
13 2 Acceioromet,-ýr Scal'e Fartr~ov

35 Gyro D~ias

1.1,2 GNrro 'Sc alo ae o

149- * , 5 Sens~oý- Natuiral Frequen:-.es
a-i Scs- Damping Rat ios

sj i 0 .~- 3~ŽSo Czd e F-Actor Lrr.ors

op. io:l..; not~ pr01. -'e'cntlk !nip2lo0n~ted in 11wi ident if ical ion



TABLE 8. ALGORITHM COMPUTATIONAL OPTIONS

OPTION EXPLANATION

No Wind All wind calculations are bypassed

No Thrust Thrust is assumed zero and mass pro-
perties are constant

No CG No moment translation due to CG off-
Translation set is considered

No a, • The aerodynamic moments are not a
required function of a or

on the maximum allowable problem dimensions given by Table

9. The two test cases given in the table, discussed in de-

tail in Section V, provide examples of the algorithm execu-

tion times. Execution of test case 1 requires approximately

7 minutes while test case 2 required 17.5 minutes.

TABLE 9. PROGRAM SPECIFICATIONS

TEST TES'r
PROGRAM SPECF1CATION MAXIMUM CASE CASE

_O A __ ALLOWABLE 1 2

Number of d18amic state.; IF IF is

Number nf estiniated parn...rs 50 11 j6

Number of mpasurtrcerat. ni eauhi sample time 10 8 8

Numhe(r of measurement saný,,es. 650 100 100

integr~rt ion stcprp per m•-.,.,rempnt 1 1

,Maximum allowable dimensions are easily modified by recom-

piling the algorithm source code,

m mm m m m m m m m m mm m m m • "'



Previous experience with conversion of computer al-

gorithms similar to the one proposed here to a CDC 6600 com-

puter indicate an improvement in execution time of at least I
a factor of five. Core requirements should be within 120K

CDC 6600 words.

jI



SECTION V

ALGORITHM VERIFICATION WITH SYNTHETIC DATA

INTRODUQ 1 iON

The algorithm verilication results presented in this

section are based on the processing of compurer-generated

synthetic mneasuremenIs from an airframe model of an existing

short-range air--t---ir intercept missile. The primary pur-

pose of "nos",, scudtiles is to demonstrate the val idity of the

extendeu Kcair.:n filter as an identification algori thmi, with

a coeitrolled .es-t case. The actual state and parameter esti-

mation errors arr' Vutmpared to the statistics of ihes-o erfol .

as predicted by the:. algcrithri. Consistency between the actual

errors and the predicted statisiics is an indication of proper

filter performance.

Divergence ti the estimation errors from the filter

prodicted error siand;.ard derivations can result from several

sourcs"sucti as:

.inconsistency between the measurement
g.enerator model and the filter design
model

* Arnalvtical or programming errors

* inaiiit ,-aal precision (word length)

* Inaccurate linearization.

The first error source is removed from consideration in -the

controlled experiment discussed here -- certain subprograms

used within the filter algorithm are shared by the measure-

ment generation routinte insuring model consistency.

48



Because of the complexity and generality of the dy-

namic state equations, the major source of error has been with

the analytical derivation and programming of the analytical

partial derivative calculations. The numerical partial de-

rivative calculation provides an independent verification of

the analytical computations. I
Filter inaccuracies caused by numerical precision are

frequently encountered in large scale Kalman filtering prob-

lems. Special purpose filLering equations, such as square

root filter algorithms (Reference 2), are often implemented

solely for the purpose of avoiding word length difficulties.

All results presented in this report were performed using IBM I
360 single precision arithmetic. Several identification fail-.

ures have occurred in instances with no process noise and low

measurement uncertainty -- resulting in highly accurate param-

eter and state estimation accuracy. These failures were at-

tributei to precision difficulties. With normal measurement

noise and process noise inputs no precision difficulties have

arisen.

Filter divergence resulting from violation of the

linearity requirement is a common problem in the application

of extended Kalman filters (Reference 12). This problem can

sometimes be solved by using accurate initialization methods,

the injection of process noise, or resorting to more complex

filters based on second order Taylor series expansions, sucL

as the second-order Gaussian filter (Reference 12). F.-,-tu-

nately, the cases investigated here have dc.moi.st-ttlev ,e-iltrk-

able linearity for large parameter and initi.-] s"• u,.,r-

tainty. This result has been verified through i, numcýrical

partial derivative computations mentioned previously.

A fi



A distinction between two types of models must be made

in the discussion of filter evaluation with synthetic data.

One model is used for generating synthetic measurements while

a second model is used within the filter. For the majority

of the discussion in this section, these models have identical

structure -- yet differ by parameter values, state initial con-

diti,,h values, and process noise inputs.

The short-range air-to-air interceptor model used for

generating measurements was designed to exercise the various

modeling optiors discussed in Sections II and Ill. Its mass

charact, r1-tics. thrust model and aerodynamic coefficients are

typical of exlsting missile configurations. The coefficient

values chosen for measurement generation were selected by a

Gaussian random number generator with mean values equal to

representative wind tunnel values and standard deviations of

about 25 percent of the mean. The resulting aerodynamic model

corresponds to no actual missile but provides a suitable demon-

stration case. The airframe has no pitch rate or acceleration

feedback for stability augmentation and thus stable missile

flight can be achieved by commanding open loop aerodynamic

control surface (canards in this case) deflections. The roll

aerodynamics were not modeled -- aerodynamic roll coefficients

were fixed at zero -- and yet considerable roll motion was in-

duced from the roll perturbation moments. The linear pitch,

yaw and dr-ag, aorc.dynamic coefficients were assigned values

near th-e lew -nv -of-attack wind tunnel values for the short-

range interceptor.

The data shown in this section were taken during the

first two seconds of missile flight. The missile velocity

variation is fron, Mach 1.1 to Mach 1.6 during this time.

Time-varying thrust :-.nd mass characteristics are modeled

during this period.
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A NOMINAL TEST CASE

A test case is discussed in detail in this section

in order to demonstrate the algorithm output. Subsequent sub-

sections present variations to this case.

The aerodynamic model used consists of 11 basic pitch,
yaw, and drag linear aerodynamic terms. If the missile dynamic

response can be restricted to within a suitably small region

about some known reference condition during the period of

identification, this parameter Fet will accurately represent

the airframe response without additional nonlinear terms.

This set of coefficients is widely used for missile perform-

ance studies and autopilot design studies, and values for

these terms are relatively well known prior to fliht test.

We assume during this test that these basic aerodynamic terms

are known to within about 25 percent (one sigma). These 11

parameters, the values used for filter initialization, and the

initial parameter uncertainty assumed within the filter model

are given in Table 10. The "true" parameter values used for

measurement generat.ion (also shown in Table 10) were computed

from a Gaussian random number generator using statistics i~en-

tical to the filter model. The resulting aerodynamic force

and moment model is given by Table Ii.

The test flight simulated here is representative of

an air launched flight from about 22,000 feet altitude at Mach

1.1. The mean initial dynamic state values and their standard

deviations are given in Table 12. The initial state uncertain-

ties are realistic for flight tests of the airframe studied here.

The aerodynamic control surface deflections for the

nominal case were not designed specifically for the purpose

of aerodynamic pjarameter estimation. The pitch and yaw control
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TAY, LE 11. NOMINAL TEST CASE AERODYNAMIC MODEL

AEhODYNAMIC MATHEMATICAL MODELo|.rrtrr .

x Body Force AQC

y Body Forco A0(CyR + Cy6 rAr) I
"Body Force AQ(Cz ax + Cz6,6q)

Moment About x 0

MOment Ahout y ADO(C,, ai + C11,6.Q + Cu q wD )

CTQ(NF-r r r DiMoment Alba I io(CNuL + CN6q CNrr

TABLE 12. NOMINAL INITIAL DYNAMIC STATE STATISTICS

STATE UNITS MEAN STANDARD
DEVIATION

Body Velocity (x) ft/sec 1160.0 100.0

Body Velocity (y) ft/sec 0.0 20.0

Body Velocity (Z) ft/sec 0.0 20.0

Inertial Position (x) ft 0.0 200.0

Inertial Position (y) ft 0.0 200.0

Inertial Position (z) ft -22100 200.0

DodY Rotation Rate About x rad/sec 0.0 0.20

Body Rno'ttion Rate About y rad/sec 0.0 0.20

Body Rotation Rate Aboit rz rad/sec 0.0 0.20

Roll Euler Angle o rad 0.0 0.04

Pitch Eu]er Angle e rad 0L0 0.04
Heading Eu~er Angle v rad 0.0 0.04



deflections were extracted from simulation of an air-to-air
target engagement. The pitch and yaw control histories are

shown in Figures 5 and 6. An operationally required 0.4-

second control input delay is indicated on these figures.

Six process noise inputs were included as perturba.-

tion inputs to the force and moment equations in generating

the synthetic measurement data. Noise was processed through

low pass filters to generate time-functions representative of

the appropriate correlated process noise inputs. The pertur-

bation inputs are specified by their noise bandwidth and rms

magnitude. A bandwidth of 10 rad/sec (0.1-second correlation

time) was selected for all perturbation inputs. The noise

entering the acceleration equations (rf) is given the same

rms acceleration level as the acceleration measurement un-
2

certainty -- 2 ft/sec (0.06 g). The moment perturbations

20

.20

•30
0 2

TIME I(e)

Figure 5. Pitch Control for Nominal Test Case
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Figure 6. Yaw Control for Nominal Test Case

are given rms magnitudes of 50 ft-lb in pitch and yaw, and 10

ft-l.b in roll --- roughly equivalent to a 0.3-degree rms noise

level on control deflection measurement or a 5-ft/sec wind

gust rms level. A typical realization of the perturbation

input is given by Figure 7. This particular sample was input

as the body x-nxis force perturbation for the nominal case.

Measurements considered for the nominal test case

were three accelerometers located near thn missile nose, three

body rate gyros and the a-ý sensors. White noise sequences

were used for the measurement error models. The noise levels

(one sigma) are given in Table 13. The measurement sample

rate was 50 hertz for this case.

TABLE 13. NOMINAL MEASUREMENT NOISE LEVELS

MEASUREYfENTS UNITS DEVIS.D?"
•EV --.7 •

All Accelerometers ftisec ' .0

All Rate Gyros rad/sec 0o'02
a-b Sensors rad 0.02. ... .. ..
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Figure 7. Typical Perturbation Force* Input
For the Nominal Test Case

The estimates of the aerodynamic coefficients used to

initialize the identification algorithm must be approximately

correct in order for the EKF to provide useful results. The

required accuracy of the a priori model cannot be generalized

and will vary from case to case. Nevertheless any obvious

errors, such as control input sign errois, etc, should be re-

moved prior to attempting parameter identification. Assist-

ance in initial model checkout is provided by simply integra-

tin,; the a !',,io-i model and comparing the result with the

f'light r.%u-,uem:i.l The comparsion for the nominal test

case discussed abo'-e is presented in Figure 8. The trajec-

tory mismatch indicated by this figure results from initial

condition errors, parameLer errors, and the process noise

inputs.

The roll rare response resulting from the process

noise input utilized for measurement generation can be seen



from Figure 8(d). The roll angle resulting from this case

was approximately 560 degrees after 2 seconds -- realistic for

an airframe without roll stabilization. The predicted roll
rate is zero -- indicating no a priori information about the roll I
response is assumed. The predicted pitch and yaw rotation rate

responses exhibit large deviations from the actual as a result 5
of process noise and parameter uncertainty. This rotation rate

sensitivity to parameter errors indicates that measurements of

rotation rate should be useful for parameter identification.

I The angle-of-attack and sideslip responses resulting

from the control input are larger than those from a more real-

istic model of this airframe because of the omission nf the

nonlinear aerodynamic effects. Nevertheless the extreme varia-

tion in angular motion offers an excellent test of the extended

Kalman filter ability to identify parameters. Identification in

I situations having different angle-of-attack and sideslip time-

histories is discussed in the subsections to follow.

The interpretation of parameter identification results

and the verification of accurate filter performance is aided by

the visualization of a variety of algorithm outputs. The

following variables are available from the EKF as functions of

time.

I State estimate and state estimation

accuracy

• Parameter estimates and parameter
estimation accuracy

EKF residual process and its one
sigma bounds.

In addition, parameter-to-parameter correlation coeffi-
cients are useful since individual parameters ma~y be highly
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unobservable and yet highly correlated -- indicating sEome

linear combination of parameters may be vstimateýd, Parameter-

to-dynamic state correlations tire also available and may allow

insight into additional measuremients which would produce bet ter

parameter observabili iy.

When synthetic neasuremenits are processed, the actual

parameter and state values are a%'aiirible as well us the filter

estimates. Thus, ac'tual state an~d parameter estimation errors

may' be computed and compared to the predicted one sigmna error

bounds as funct ions of time. The parameter erroro, stat e errors,
residuals and all respec'tiv'e one sigma bounds for the tcst case

discusýsed above are contained in Appeniiu.x A.

The results in Appendix A must be interpre'led in a

slaiistical sense -- recall that. a normally distributed ran-

domn quantity is within one sigma 68.3 percent of the time,

within two sigma 95.5 percent of the time, and within thr.?e

sigma 99,7 percent of' the time. The data in Appendix A rep-

resents only one sample generated by an initial starting seed

to R random number generator. A more thorough statistical

anulysis requires Ft large number of random -trials and the

collective interpretation of the ensemble results. This

monte carlo type of iilter evaluation has not been performed

becatise of the expense of computing several monte oarlo sam.-

ples. Nevertheless t~he szingle sample results for ;st-ate and

paramneter estimation conta-inec in Appendix A are a useful

indication of ucceptable filter performance.

Ai udditional performance %"ndicator lies in the while-

ness of the filter residuals. Visual verification of rcsiduail

whiteness and c'orrespondence of' the residual wagnitudes with

tneir one sigmia bounds shows e-xcellent filter performtance as

seen in Figure A-3 of Appendix A.



A useful summary of the parameter estimation perform-

ance for the nominal case is given in Table 5. This table

includes true parameter values , final filter estimates, final

filter r.-andard deviations and a figure of merit referred to as

D A value of n greater than about three indicates a highly im-

probable parameter error and thus, possibly poor filter per-

formance. The value of na is computed according to:

where

th

a. = actual value of i parameter
12

0= filter predicted standard deviation

In practical applications where the actual model

structure and parameter values are unknown, good correlation

between the predicted measurements from the filter and the

actual measurements is an indication of acceptable filter

operation. Yet if the final parameter estimates from filter-

ing are inserted into an otherwise a priori model, a poor

correlation between computed and actual measurements may

result. Small levels of cmitted disturbance inputs (process

noise) or erroneous state initial conditions may have a sig-

nificant effect when integrated uver many samples. This

phenomenon is demonstrated using the nominal test case. The

computed pitch rate agreement with the measured pitch rate

shown by Figure 9 is not significantly improved when com-

pared with Figure 8(e).
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An alte nqt)ive procedure can be used to indicate imn-

proved parameter accuracy when synthetic data is used. In

this case. state ini.tial conditions and process no.ne inputs

are kiown perfectly. Thus,a priori parameter values can be

used with perfect sta"•e initial conditions and known disturb-

ance inputs to demonstrate the model uncertainty resulting

from initial parameter errors alone. Figure 10 shows the

pitch rate measurement agreement in this case. A similar

trajectory produced using the final parameter estimates (with

perfect state initial conditions and process noise) resulting
from filtering should show improved agreement-- indicalingmodel

improvement. This is demonstrated in Figure ii where excellent

agreement is obtained between actual and predicted pitch rate

measurement. Although not included here, similar excellent

agreement occurs for the remaining measurements.
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An alternate model will be used as a reference in

certain sensitivity studies to be shown in the sections to

follow. This alternate nominal case includes an erroneous CG

transl: tiun term and yet the resulting sensitivity studiev-

providt, useful performance data. An erroneous sign of the CG

translation term resulted in a more stable airframe and

sm] I cr angle-of-attack and sidesl ip responses t:o the cont rol

inputs given in Figures 5 and G. The angle-ol-attack and

sideslip responses for this case are shown in Figures 12

and 13. The 3nititlization and measurement uncertiinties

are iden, J-al to those used previousl\. A summary of the

paramelter identification performance is given in Table 14.

Note that the pa;,rameter estimation accuracy predicted by the

filter is worse in all cases than for the previously defined

nominal case (Table 10). This is a direct result of the

reduced A and 3 reýsponses for this catse -- also note that the

values of n in most cases are below those in Table 10.

0.

of oi -

".4.
•*0.: •"

012

I FA E

Figure 12. Anlt rI J -- f-Attach froro Alternate
kNowrin-,1l TeDst Cas0 e
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TABLE 14. FILTE: 'ERFOR•fN.•E SUMMARY FOR
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PARAMETER- ILTEN

PARAMETER STANDARD
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c -0.052 O.004. 0. OLY•r

Cz -- ,43.39 0 . D87 1.29
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FLIGHT SENSOR STUDIES

Adequate flight instrumentation is necessary for the

extraction of useful aerodynamic models from missile flight

tests. Three studies are discussed in this sibsection relating

to flight sensors. Studies of this nature E.re useful for the

design of flight test maneuvers and instrumentation specifications.

SENSOR NOISE

Scnscr errors can be classified into two categories

for the purpose of error modeling -- random effects with no

time-correlation called "white" noise, and errors which are

correlated in time. White noLse is easily modeled for stat-

istical filtering, while the correlated errors require a

thorough understanding of the sensor dynamics.

Test cases for four noise model variations from

the nominal case are described in Table 15. A summary

TABLE 15. NOISE SENSITIVITY STUDILS

CASE DESCRIPTION

1 Two times nominal noise modeled within the filter
-- two times nominal noise used for measurement
generation.

2 Two times nominal noise modeled by the filter
-- nominal noise levels used for measurement
generation.

3 Halfr nominal noiise modeled in the filter--- half
nomninal noise used fot measurement generation.

4 Hall nominal noiscl modeled in the filter--
n)minal noisQ., used for mneasurement generation.

S~66
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of the filter performance for the first two cases after

2 seconds of filtering is given in Table 16 along with the

nominal filter performance. The parameter error is increased

in both cases. In addition, values of no are reduced from

the nominal case, indicating better predicted/actual filter

correlation. Typical residual processes from these two cases

are shown in Figures 14 and 15. In Figure 14, where the filter

model is correct, 64 percent of the residual points are included

within the one sigma bound. In Figure 15, 96 percent of the

residual points are within one sigma. This result demonstrates

how measurement noise statistics can be identified by inspec-

tion of the residual process and the predicted residual bound.

TABLE 16. PARAMETER IDENTIFICATION PERFORMANCE WITH
TI r~1 A C'1*'r 1IT' A ~r~nT1Xl "Ar n MTm ~ CT

CASE 1 CASF 2
INCREASED NOMINAL

MEASUREMENT NOISE, MEASUREMENT NOISE,
PARAMETER NOMINAL, CORRECT FILTER MODEL INCORRECT FILTERI MODEL

01(n.) o(n ) o(n )

C 0.0351 (1.6) 0.0523 (1.05) 0.0541 (0.99)

Cy 0.574 (1.6) 0 899 (0.81) 0.929 (0.67)

C 0.00448 (0.2) 0.00586 (0.05) 0.00583 (0.10)Y or

C 0.692 (1.5) 1.07 (0.78) 1.11 (0,67)z

C 0.00601 (1.1) 0.00767 (0.81) 0.00766 (0.56)
q

C 3.44 (1.3) 4.73 (0.81) 4.91 (0.66)
a

Ckl6 0.0843 (1.07) 0.1061 (0.78) 0.1087 (0.-6I
q

CM1032 (0.010) 1061. (0.04) 1057 (0.15)
(I

C 3.30 (1.9) 4.64 (1,08) 4.78 (0.99)

CN6 0.0608 (1.3) 0.0804 (0.58) 0.0819 (0.57)

CN 850 (2.2) 878.5 (2.2) 872.3 (2.2)
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The two senbor noise cases with reduced noise levels

are summarized in Table 17, and compared with the nominal

estimation performance. For these cases, 0.8 second of data

were processed. Parameter accuracies are improved in both

cases. Note that the values (f n are larger than for the

nominal case.

Numerical difficulties were encountered with Case 4

after 1 second of integration, because the predicted residual

covariance matrix became ill-conditioned. Both state and

parameter estimates show signs of filter divergence prior to

this point. (Note that relatively large values of no for

this case at 0.8 second). The residual process for the angle-

of-attack measurement from Case 4 is shown in Figure 16.

Only 33 percent of the residual points are included within

the one sigma bound.

Several characteristics of the extended Kalman Filter

are demonstrated by the noise sensitivity examples discussed

below:

a Predicted and actual estimation error
agreement is improved with increasing
measurement noise levels.

* Conservative measurement noise levels
have little effect on the resulting
filter estimates and result in stable
filter performance (Reference 12, p. 244-
251). Correct noise levels can be
inferred from the resulting residual
process.

0 Low measurement noise levels can
result in filter divergence and numerical
difficulties. (This could be corrected by
use of higher precision arithmetic).

L



TABLE 17. PARAMETER IDENTIFICATION PERFORMANCE WITH
REDUCED MEASUREMENT NOISE

CASE 3 CASE 4
REDUCED NOMINAL

NOMINAL (T-.8) MEASUREMENT NOISE, MEASUREMENT NOISE,
PARAME"TER CORRECT FILTER MODEL INCORRUCT FILTER MODEL

v (n ) o(n ) 0(.o)

C 0.110 (0.27) 0.0727 1.2) 0.0732 (2.4)

C 1.88 (0 .1) 1.32 11.6) 1.310 (2.8)

Cy6 0.00791 (0.53) 0.00760 (0.7) 0.00770 (0.68)
. r

C7  2.227 (0.48) 1.53 (1.1) 1.525 (2.3)

0.00872 (0.54) 0.00809 (1.4) 0.0t823 (0.55)

C t 10.71 (0.11) 8.57 (1.4) 8.76 (2.4)

CM 0.207 (0.29) 0.169 (1-.6) 0.175 (2.4)

6qCM 2903 ( 0.38) 2860 (0.5) 2867 (0.35)

CN 7.82 ( 0.05) 7.32 (1.6) 7,50 (2.5)
11

C 1.83 (0.80) 0.155 (1.1) 0.160 (1.63)

r
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SENSOR SELECTION

Sensors frequently used for gathering flight

test data are discussed in Section III. The generality of

the exLended Kalrnan Filter facilitates transition between

sensor sets, providing the appropriate measurement models and

partial derivatives are included. As a demonstration of this

sensor selection capability, identification results from

different sensor sets are presented in this subsections.

These sensor sets are given in Table 18.

Case 5 is the same as the nominal, except for the

longitudinal accelerometer. In many cases missiles have

operational requirements for only two accelerometers mounted

orthogonal to the missile centerline. Thus, flight tests

71



TABLE 18. SENSOR SELECTION STUDIES

CASE DESCRIPTION

5 Omit longitudinal accelerometer from nominal

measurement set

6 Accelerometer measurements only

7 Rate gyro measurements only

Position and attitude measurements only

using oily operationally required sensors would not include a

longitudinal accelerometer. The primary utility of this

acckleromerer i. r parameter identification is in the deter-

mination of the drag related aerodynamic terms (e.g. , Cxo in the

linear airframe model).

Estimation performance for Case 5 is shown in Table

19. The predicted drag estimation accuracy is degraded

from the nominal case; however, the initial drag uncertainty

of 0.4 was improved to 0.17 -- indicating some drag informa--

tion is available without a longitudinal accelerometer.

Drag information is apparently inferred from know--

ledge of the velocity profile -- velocity is "learned" along

with the dynamic pressure through the known relationship

and uncertainties governing the lateral accelerometer rnea--

surements, dynamic pressure and the uncertain parameters.

The initial longitudinal velocity uncertainty is 100 ft/sec;

this error is reduced to 10.7 ft/sec for the nominal case,

and to 14.8 ft/sec without the longitudinal accelcrometer.

Accel.trometers and rate gyros are the most common

sensors found on operational missiles. In Cases 6 and 7,

72
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TABLE 20. PARAMETER ESTIMATION ACCURACY WITH
ACCELEROMETER AND RATE GYROS ONLY

- -- -

CASE 6 CASE 7
PARAMETER ACCELEROMETERS RATE. GYROS

ONLY; T=0.8 sec ONLY; T=2.0 sec
c(n ),

C 0.120 (0.89) 0.393 (0.89)
0

C 1.37 (11.1) 1.40 (1.8)

c 0.00073 (0.89) 0.0098 (0.55)

0.975 (40.2) 1.76 (1.13)

C 0,00973 (1.62) 0,00996 (0.26)
76q

C 1a 112.29 (5.28) 7.77 (0.11)

C 0.228 (•,8) 0.192 (0.49)
6q-

CM 2370 (3.6) 523 (2.0)

qD
C~~ - . (4..J 7IG U.JU.l 172 ' '

I CN~ 0.W3 (1.6) (0.31)

c 2 2716 (0.73" 5"31 0,

of G al. 1 -- scal e mi:fls mod., I F.i f red v ½."',a )'ioj f,.:t Ii' test
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Nevertheless, highly accurate position and attitude measure-

ments have been used with success to extract aer3dynanic data

in ballistic test ranges.

Three missile position measurements and three Euler

angle attitude measurements were assumrd with measuremenc

noise leels of 5 feet and 0.01 radian, respectively, at a

data rate of 50 hertz. These accuracies are repreEentative

of phototheodolite measurem.ents. The resulting para,,eter est!-

manion accuracies are co.npared with the alternate nominal re.-

sults in Tab>'- 21. The filter pertora-eince i. this case cor-
related well. with predicted perlormarce; h-,ver, the result-

ing paramret Ir accuracies were degx- •dsed from the- nomflripa, melln-

uren.ent -•!. It Js interest ing t i,.,ttv an cx•,,, Ing C.s s

7 and 8, that more aerodynamic iform.,-1AnTor: Is available from

'rate gyros a]one thatn from posilion d at ' data, for

Zn m'easurenc.rtt accuri±cies lfleýtI4gated.

A s!grniti cant lssue wita regar* -io sen.,cr s.election
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TABLE 21. PARAM•ETER IDENTIFICATION £E'i}N••,, A! •, E WLTU
POSITION AND ATTY VDE ,{ASUUbNTS

~~;-_AZ- 8

1, T E.RNA'!F, ,4A~
NOMtAL 6 PuL~ AN'DPAXAMETER NOMTNALOD-

oPASCt.EIiERNT 0(n

Q. 04C34 (1.7C..# (0.54)

C 0.784 (1.2) 19 (0.80)

c 0.0454 (0.663) 0.00997 (1.04)
Cy6

0.987 (1.29) 2.40 (0.02)

CQ0.00619 (0.61) 0.00996 (1.8)6q!
Cm 5.11 (i(.03) 14.72 (1.4)

ONc 0.0909 (1.17) 0,187 (0. ,i0) • :

q

CX--1 4 74I (0,7) E 12.55 (0.71)

• 0,414 1 .019 )(0.44) 0,4)

C(.4) 23$4.,0 (1.2)
I I

mivJX t"i r-i~t whi.1 t-i; f]V~~ ur aJ&TJ~ re icu~

11 n z. , r ,.n ,, I-lie ar, -u]so -.od )-l.ed rd tW vst fln ,O d
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was different from the seed used to produce the results

for the alternate nominal case shown in Table 14. This
results in different perturbation input time histories,

parameter initializations, and measurement errors. The
alternate nominal parameter estimation results were- recoin-

puted (without systematic errors) wi-th the new seed ior

comparison. .

The bias and scale factor levels studied are shuwn

in Table 22. Each type of error was studied individually, 4

for a total of four examp!es; each of the four cases included

the three additional parameters associated with the corre--

sponding systematic errors -- x, y, and z axis biases, for

* examlc. The Predirted p.qraneter identification accuracy

tar thl four cases is shrwn in Tal .to 23, together with the

S.altern.t•:c uo~ninal case having no Lstematic errors.

TABLE 23. SYST-EMATIC ERRORS SENSITIVITY STUDIES

DLSQCR! PTI ON

Uk{kO*R TYPE SIPANDAWJ DEVJATYDN

9i Acctemera;mlc or bias "2.0 2t/sec

1 3.0 Ac~ce cron..ett-r .:b.le i t..or (,.02
('tV X1' I" I

, i Rtdt( fly1u bhi•,0. 02 rad, "

:z12 ,I gvro 1 f:ca.l c tor W.A"
/;.;e r )20a r

"I

A -7



I
TABLE 23. THE EFFECTS OF SYSTEMATIC MEASUREMENT ERROR

ON PARAMETER IDENTIFICATION

"PREDICTED PARAMETER STANDARD DEVIATIONS

PARAMETER AL.TERNATE. NOWIINAL CA:Z[: 9 CASE 10 CASE 11 CASE 12

K.) SYSTfMATIC A CELEUROM.TE1 ACCEI.EC'1HTETR GYRO BIAS 07RO SCALESEiInO BIAS ERRORS SCALE FACTOR ERRORS VACTOR ERRORS

C 0. o1Z 7 0.03(7 0.037- 0.02,47 O.o2btj

C 0, .0•4F 0.91-1 (.T974 0.090 1.021

1",. f0U01F4 'i•. 00677 0.007415 0. 00572 0.00694

C . 313F .1.n9 1.790 1.:40 1.322
z

C 0.00628 O.00638 0.00710 3.00682 O. ) r.7S

6t_3 6.10 6.62 E.A,0
" m UU3 0 0924, 0.0910 O.094 0.1.0i6-

f' Gio 0.092

CH i..: ,6..%7 $.46;b | 6.6p :

C 1"0 .35 0.10 G'110 . .

Ni

CI I 46,i , Z4 4, ,255.0 126 .1

, rro r O.u I -19 0 0(,i4 0. .C I3 0 O116.

t. 4'4, t I,
0 -. '0.'Q 121 0 0. '.'60 v.imlo

r ri•,1 - (1.0 !1 .085 0 ,fim;llP
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1
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conti'ol surface orientation with respect to the relative

wind. The aerodynamic coefficients relate the relative vind

to the forces and moments. To estimate the aerodynamic co-

efficients, es.imates o0 force and moitments and estimates of

the relative wind must be inferred. Giver, the aerodynuw.itc
coefficients, the relatit'e wind information (u and C) can be
determined from acceleration and rate gyro measuremjent and

known control surface dlections. Also, givez. g,.,ood esti-

mates of initl missile inertial velocity and a perfect nlta-

su-re of atmospheric wind -.- the relative wind velocity car, be

e.timnate& via integrotion o. the acceleration over short time

i.ntervarv. al With uncertain wind and initi%,al velocity errors

as well as param.iter uncertainty, it is not clear whether

o and ý can be estimated with suffJicient accuracy to Jmprove

the estimates of the ae(rodynamic paramete.. Thus,, it might

U.- argued that a. and £ sensors are required for pvrz.,eter

acidntificatioi w�hen atmospheric wind uncertainti.es are present

A brief study addressing this issue i.s discussed here. The

test cases are listed in; Table 24.

....... ca, -...- n
4

.4-. ,..4vlr

included in the KIE gcrneral.ized airframLc Ymc,del]. The steady

componrunt 01 wind is :n(oieled by a horizontl vector with

magnitude rnd headie, thýlt ar•. functions of altitude. The i

inclusJor of a steady wind co'rectly modeled witbin the filter

dyxinucs was found to ha;.ve lt t.A cli ,icet on the ½r..rarnter

id.rcitif jan ca pc:rtorm:;nce (a slight id:nti.I cztion iry, .ve -

mur,t was noticed, np.artftl. .rom the additiv-,nal LL an.c1 E var'l•x--

t1Jon resuItIng Irom thij: wind . A nor tzonita'. V Z -?v t,1 o0 about

ii1j ft / c orC.5nted 11Vd'- a 'roi t.inx. i.. I, 1 o i -, A• : hub ad-

U., (twa:,r a uc,14)d.

'uS: ]pere I,%. ilt. W._)d iII. ,801\ ItL,,, ali ii udc Ot. ( .. rcF ,,t 14).



TABLE 24. WIND STUDIES

CAL F ~~DESCRIPTI ON _ _j4

2 Nomninal case with deterministic wind addedI

'14 Ucranwind adde.:d to Caseý- 13I

15 Case 14 with poor a-e- sensors

I(, Casý-e 15 with poorc initial attitude and vlct

1.7 Cas 6I with accurate a-hsensors Iý

I n addit ion to the. determinn.tst ic valnd, a. random (u

conlstant) wi;:nd bias wjas mjodeled and estimated (Case 111).

Rardom wind biae'Jo up o. 50 ft/sec ink the-- three in~ertial

a)xes were mo~deled. Wit~h nominal. measure-ments &,-.d initial

(.,.ndtjtaans , lilttle ehIýngc was observtd in the parameter iden-,

tifcaior acurcyand the wt -nd u-ýncertainty was improved I r o m

50 li s-eto about $Itscin each ci theý three inertial

directions. The noamiinal vi. anid P enor were inc 1 '.uded in

these caýses.

The cifcsof the ax )and P3 sensors on the idc-ntifi--

cattioni accuracy,, with large dotermini stic wind and large wiind

unc-crtainty was de,,termined by varying the me.asujrnemnt, noiseiý

1aVL Qn -cck u ar.6 sensorti ( 3s .5) . The ,)C 'tJ-1 Cx and f"

senornoisvhieU1 0.02 i-dAatwas irasdto0.2. radian)

repusntngessentially no, inflormattion, provide.d by the a and

f~sensors. F.or this caethere was, no noticabile dec!(rease ir6

the riarameter idein.l 1 ciuaLid:. acC-uracy. Some dgradation1 in

the abLiIIt 110t t es-ýtil Imate wind ws nlot~iced, Wi11 lb ino unc.r t~all-*

1 i:,o abiout 40itsc
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Some additional studies were conducted to isolate

the relationship between initial state uncertainties and

parameter identification in the presence of wind. Note that A

if good initial estimates of the lateral components of mis-

sile inertial velocity are available and if good initial

estimates of missile attitudes are known, good initial esti-

mates of a and ý can be computed. By propagating these ini-

tial estimates through the airframe dynamics, a and 9 esti-

mates may be inferred. For Case 16, the lateral velocity com-

ponent uncertainties were increased from the nominal value of

20 to 80 ft/sec while the initial missile attitude uncertain-

ties were increased from nominal values of 0.04 to 0.2 radian.

With the large a and Q sensor rms noise level (0.2 radian),

this case exhiblied filtir diver gence Figure 17 shows the

resulting z-axis wind estimation errors as a function ol time.

Case 17 was performed with very 1ox (A and , sensor noise levels

(0.002 radian); the filter performance was near nominal with

the z-axis wind estimation error shown by Figure 18. Thus, to

avoid divergence in the presence of large state initial con-

dition errors and uncertain wind, accurate a and • measure-

ments may be required.

ESTIMATION OF .MV)NLINEAIR AERODYNAMIC EFFECTS

The piovious sections considered only the so called

"]inear" aerodynamic effects, however the resulting dyiiatnic

model is highly nonlinei•ar in the augmented sy,. tein stalt vector.

'i'lie inclusioni -I additi,)nal "nonlinoar aerodynan- LV: elIJects"
is colcelptually no more difficult to hand>. in the par ameter

ideut iiication algorithmrs than the previous ex•,izjlus. NL.ver-

ithde]Js, in order to demornstrate the capqabilit•es of iduntify-

ing ta large nurrber larantetr, o, h varjety (, nohllnia:" an'J

CroziS cuul, iing acrvdynwziic parameters arc idertilfied in tlki

sect lol.l
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One strategy for applying system identification to

an airframe might include the following steps. First, attempt

to fit the observed data using only the linear aerodynamic

terms. Observe the resulting residual process, parameter

estimates and the respective one sigma bounds and evaluate

the filter performance from the standpoint of consistency.

In many cases a linear aerodynamic model should provide rea-

sonable correlation. Next isolate potential nonlinear aero-

dynamic effects likely required to improve the model. These

additional nonlinear terms may be provided by the wind tunnel

data or through insight gained by inspection of the residual

process. For example, if a large descrepancy occurs in the

lateral acceleration residual at a time when a large roll

raUre is cbherved. a roll coupling term might be added. This

"intuitive approach' to model structure selection relies

heavily on the experience of the user and requires a highly

flexible identification algorithm so that aerodynamic co-

efficients can be removed or inserted easily.

Once a list of potential additional parameters has

been selected to improve the linear model results, parameter

uncertainty standard deviations must be selected to initialize

the additional parameters. In some cases an uncertainty

level might be ascertained from the wind tunnel data. Alter-

natively, uncertainties might bo computed by considering the

contribution of the additional aerodynamic terms to the total

aerodynamic force an0 moment coefficients. For example, if

the average angle-.of-attack and sideslip over a segment

selected for identification is observed to be C and T, the

average contribuLion to C iron u is about CN¶a . The uncer-

tainty in a term such as Chi might be selected to produce

an uncertainty Jn C of about 10 percent (f the Irown primary

coiLr)butor, CM4o, Thus, the "svandard deviatilon, c in Cij
iU aelected



A st was conducted where 25 additional terms were

included in the aerodynamic model used in, the niominal cases,

resulting in a total of 36 aerodynamic parameters. These ' •
parameters, their mean values, standard deviations and true ••

values are given in Table 25. The standard de\viations were o._
seAected so that each new dted wherebuted on the order of
n5 percent to the aerodynamic coefficientsd in

Different pitch and yaw control inputs were used
for this test case. These inputs together with the resulting

angl.-o-att and -ideslip are shown in Figuresi 19 and 20.

Only one second of data was processed, but the data rate was

':,c±'eased to 100 hertz. The large angle.-of-&attaclc and sidc-

slip variations in this trajectory should provide good ob-

servability of the nonlinear -cerms.

An a.dditioonal test case with 36 parametzrs was per- .

formed where the control inputs of Figures 19 arn'Y 20 were

reduced by half. The resulting angle-of .-attack anz CIs ii

are also indicateA[ in Figures 19 and 20. It esi. r st-Csing

to note that the "adition of thle nonlir'atM znd coupl.1, nero-

dynamic effects are not obvious f-rb-. casual observation of

Figures 19 and 20; the pitc r.' and yaw planes do not appear
coupled and the a. and f responses to coDtro, inputs could

result. from a linear aerodynamic model. T1hr identilicati.onr

of subtle aerodynamic effects which cunt-Ibuce little to the

1basic linear airfr?_sne- respiojjnse provides an excelent demon.-

stration of the c.apbiilities of th." potilight, dat-i pror;ecss;ing

algorithm diEscussed hsere.

I t



TABLE 25. PARAMETER IDENTIFICATION SUMMARY
FOR 36 PARAMETER CASE

1 ?,IT I &LIAT I I (ARAMFILF I'S lT 10'TI ACC(V4ACY

-75 TAND)ARI- ACT) Al LAHGE CO1HO R-LOCL( CU.TOOL

PARDA EiATl0(A VALCI I AII"LICTIONS I I DETI.-YT)ON '(:

C, 1 C 0.4 -1.99 ' t
1

0 ' 5 0.0701 (0.3p) 1

C" -*. 4 0 -3.97 0 58 I 1.G1 I to (0391

C, - 0 4.0 -9.9C 0 544 1.1' 1.91 (0.8p

C.6 -0 0008 1) 0004 -0.00074 O.-)00334 (0 ) 0.000 (0.4b"

C r - 000 0 0O004 -0.(0006b 0.00G300 (0.23' .000386 (0.52)

C" -). n 0 (14 --o VN7 0j21.0352 (0.71'

C -u O 0 0v .)J.059 [ . ,.1 3,' . 0.0327 (0 .25 )

(Cp 0 ,, O,.4< (0 70) 0.24f. (0.9.'

-4 C, I 1 ' ] -uI143 ( () 24 (.

.*? 0 ( 40U 0 53:). , 05 (0 .0) 2241 (0 6?)

0 4000 -52 ' 2 21 s) '' 2 LA I1 (0 3)"

. 40 3 5 0 779 :s1: 2> :3
c 'Cr -U).044 0 01, -V L-I? 0 0027P l5 0 00,112 :0 7•1
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The predicted parameter accuracy as well as the values

of n are shown in Table 25 for both control input levels. The

parameter estimation errors and the predicted one sigma bounds

are shown in Appendix A, along with the residual processes.

All consistency tests indicate the extended Kalman filter to

be performing correctly; the residuals appear white and re-

sidual magnitudes are predicted accurately and the state and

parameter errors behave according to the predicted bounds.

The values of n indicated in Table 25 indicate excellent
o

filter performance.

With the larger control input and the resulting larger

a and B, accurate ostimates of the third-order terms are ob-

taiied rapidly. 1,ottc from Figure A-4 that the primary n~ram-

eter accuracy improvement comes prior to about 0.4 second

after about 0.5 second little additional improvement results.

Yet the majority of the large a and B variations occur after

0.5 second. The drag-related terms and the Mach number varia-

tion effects are less observable than the pitch and yaw dy-

namic terms. The drag terms produce relatively Clight changes

in longitudinal acceleration so that difficulty in identifying

these effects is anticipated over short data segments.

The estimation accuracy achieved with reduced control

magnitude was significantly reduced for ten third-order non-

linear terms, with the average degradation being a factor of

about seven. Estimation error degradation for the remaining

parameters was not significant. In fact, the five Ma(h titv .ier

variation terms were improved with less a and f v-v:a ion.

ADDITIONAL PERFORMANCE STUDIES
A variety of additional studies have been conductedI

during the course of algorithm development. In particular,



parameter identiaication sensitivity to data rate, state

initial condition magnitude, and process noise are discussed

in this section (Table 26). These cases are variations of

the alternate nominal trajectory. The predicted identifica-

tion accuracies for these three demonstration cases are given

in Tablc 27.

TABLE 26. ADDITIONAL PERFORMANCE STUDIES

CASE DESCRIPTION*
NO.

j Iq tHalve the nominal data rate to 25 Hz

19 Double all initial dynamnic stateSIe
! nu t ~a.i.n iesj

20 Sec the process noise magnitude equal
tc' zero

*The measurement and filter model stiucuures are
identical on all cases.

Case 18 indicates that data rate reduction increased

the parameter estimate standard deviations, but not signifi-

cantly. Doubling the sLrnple rate (data not shown) did not
change the cstimation accuracy -- indicating 50 hert:- to be i

near the optimal data rate for this nominal case.

Doubling the dynamic state initial condition uncer-

tainry (C•.sL i9) also increases the parameter estimation

error, but not s,.j,:iIicantly. This demonstrates an insen-

sitivity of the estimates to state initial conditions, as

well as showing that ],rge initial condition uncertainty can

be tolerated witlout indications of filter divergence.

88' ,,



TABLI- '27. ADDITIONAL FILTER PERFORMANCE STUD1IS

'" I l " 1 ltrl .11 '1]'A PH ARPID I;: 'A'1V I k IN:,S;' A " It I P; * 'I I' 111VIATION CAFI I R C-tI I CASTI

fNOMINAl 1AirN'HI' DAPA ix)I'HYI IC NO4 '
HA 2 UNCEI'TA IITY N NOI,1

S(+ • I |(I. (I j 1. 1). {l060(l 0.% Wfl 0 l{

10 V I 724 1 02tr 0.. 51 0.600,

C 0"01 0.00.15 (1t'.05:4 0. 04 7 U. 0013

C.. 10.t . ,187 1.27 7 •.7C,

7.i , ('I (1 .o0tli2 U. 0071 01 (0062 0.005-I

C'l.,t "t L I• ,.I 2 . 7 8

, l. i .091 0. 113 9.102 0. 1)5'.

Cm 1'(0 111801. 0 1 1-1 . o 11 M9. 2C5.0

('N, 47 b.. 39 r.. 2 72

? ~CN,ý .7t'.•; O. OS1 0. k74 0J I42
C. (

4
* J(I j !17 1 .. o 10 9R6 0.0

Case 20 shows ident ifica.ioj n accuracy with no pro-

cess noise input. In some cases cignificant identification

improvement results, particularity CbQ and CNr. The process

noise adds directly to the forcee vrd moment equations which

include the aerodynamic pa.rarmeters. As more noise is added,

the deterministic structure of the model has relativel- 1es_

effect. so that the parameters become les observable.

An additional test case was performed in order to

demonstrate the capability to fix certain well known param--

eters while estimating other terms. The less visible: pa-

rameters from the nominal case are Cy6r, Cz 6 q, CM, and CNr.

If the remaining 7 coefficients are fixed at the true values

these less observable parameters should become more visible.

The improved identification accuracy for this case i: .- 11ewn

in Table 28.
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T43LE 28. IDEN.-'TIY I CATION ACCUIfACY WITHl
YFART IAL T:ARAMIETFR37'

P' IIVITIi.l tNCTIiTA INTY 11 PIARAME77MS (NOMINAL) -1 PARAMETERS

I0.01 0.(14 4 8 0.00288

0(j0. 006t! 1 0. 00432

:I0OrJ.(10321.0 100.

NUME of heR0. 0 re 1nte in 0 h

SYNTI-iETIC, DUA-,, PIC)C'E.SSIýNG4 F2P A CALSE EXHIBITING LARGE MACH

with subrout-i~nes sha aed by ,he filter. For these cases the

stru ofthedv-imic u.:;e formeaureentgeneration was

k-,nowr1 to be id-,nt-ical, to the s'r'LiIYure assumea within tne fil-

tering algori;thm.

Ao) a:dditiLonal !;tdy was to be performed during this

effortL in urcrto -exercise the genera]. purpose airfrzsme

rd. - fe.A1 and zLhe filte:,ring algoraLthm against synthetic measure-

m~,,nt data, 'ro'-ý idedl rt' the Air Force. The data were to be

g enc. iJ: z(,d 1ranij,-sjle exhibiting large variationsý in Mach

Synthetic data were provided by AFATL that, were

generated from a six-degrees-of-freedom simulation developed

*Air Force Armamtient Laboratory, Eglin Air Force Base, FlJorida.
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independently from 1hu model discussed in Section 11 This

data rep.:.esents a 6.6-seconds trajectory from a high lift,

bank-to-turn airframe for a short-rangc air-to-a.ir in~ter-

ceptor. The trajectory contains a 2.6-seconds boost followed

by Iour iseconds of coast flight during which various pitch

iand yaw maneuvers are executed. The Mach number, angle-of-

attack, and sideslip profiles are given on Figures 21, 22,

and 23. Other trajectory variables -- accelerations, body

rates, atlitudes, etc -- were provided by AFATL to represent

noise-free measurements.

The equations used for modeling the aerodynamic forces

and moments were provided by AFATL and are shown in Table 29.

Atrodynamic parameter vatlues cor.rup-ted by 'approximately 10

prceent error' were provided by AFATL in the form of Table 30.

The objective of this exercise was to identify an a( rodynamic

model which accuralely reproduced the synthetic measurements

during several segments of the trajectory.

3.001

Z'30 -- __ _-____ -_

CL
2 270 .... - - -

24() -

lbO - -. --- J _

0 0J 060 1.20 180 240 3.00 360 4.20 4,80 5.40 6.00 6.60

TIME (we)

Figure 21. Mach Number Profile for AFATL Interceptor
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TABLE 29). AERODYNAMIC MODEL YOR AFATI, INTERCEIPTOR

Aerodynamnic FEruL- Co~f f ic ients:F

C C: + C~ HtxI + I
ox 2X ( 6t

cz q C, r + + 6q (1 ~p ~r/

Az

A.-,rcodvr.,mic m(?nwlit Coeffi1 ~cients:

c L C L tC + C L 6 C p +/2v

='CM + CM (S + CM1 q D/ 2,vn

C N 0 N + c N + CN rD/2v ni
r
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TABLE 30. APPROXI MATE AERIODYNAMI C PARAMLTE'E
VALUES FOR AFATI, INTERCEPTOR

COEFFICENh' V\ALULS | S c'-FFFICIFNT CHANGE
AX R0PYN A' I CC.1 AT L*- (PC)

CoEFFICIr'WT (Cl MACH- I- I MACH a I PiNMACH . 5

C, o.3 o. 0.r4 0. 179 13

C 0.00c6F 0. 0051 0.0011 50

c -0. 00032 -0. 0001b 0.00011 10

('0. 0'• . 02 ,0013 0. 005 3

-0.125 -0.080 -0. N7 19

C 0.10 Q. 059 0.0.2 35

CtO0.40 0.32 O. 180

CZ6 q 0.10:3 0.05s 0,019 3 5

CL -0100495 -0,00326 -0.00 0- 35

CL Q 093 0. 061 0.024 3.'

CL-~35 -6.50 -3.60 20

, -0.066 -0,024 0.i-' 0=1

C -0.159 -0.093 -0.0 4 30

c -29.F -23.5 -12.7 20

c 0,146 0.074 0. • 015 40 .

c6-0.1 -0.091 -0.036 15

6r
CIr -10.5-

IJ



The significant characteristic of this data from the

standpoint of parameter iden.ification is the large variation

of Mach number during boost and coast as well as the large

variation of the aerodynamic coefficients with Mach number,

as seen in Table 30. The percent rate of change in param-

eter magnitude (PC) at about Mach 2 is also indicated on

Table 30. The quantity PC is computed according to,

PC. i aM /Ci.*100

where
.th

C.i = i aerodynamic coefficient

M = .ach number

.3t/it = 0.723 per second

Note that for the majority of parameters,PC is greater than

30 percent per second for this trajectory.

The aerodynamic parameterization presented in Section II

assumes only slight variation of the aerodynamic forces and

moments with Mach number during any fli.ght segment selected for

identification. The allowable Mach variation can be expressed

more quantpatively by considering the time required for accurate

parameter estimation versus the time variation of the param-

eters with mach number. For example if the parameter uncer-

tainty at Mach 2 were .0 percent and the parameter rate of

change with Mach number is about 30 percent per second -- then

the allowable time--interval for accurate identification should

be small with respect to 1/3 second.

It becomes apparent that the aerodynamic parameteriza-

tion of Section 1I is inadequate for the large Mach variation

in the synthetic data provided by AFATL. Several alternative

:(,ethods are proposed to allow aerodynamic modeling from flight
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data in cases where all parameters mny have large but linc,.r

time variations over the selected segment.

"* Estimate the parameters as though they

are constant -- assume the resulting
parameter estimate to be an average
value; i.e., associate the final esti-
mate with the mach number at the center
of the segment.

"* Add parameters to model the linear
variation of each coefficient with mach
number; this will double the number of
parameters to be estimated.

"* Model the aerodynamic coefficients as time
varying random processes -- i.e. dynamic
state- rather than parameters. This does
not increase the dimensions of the required
EKF. Reference 15 provides an example of
identification of time-varying parameters
using this method.

o Treat the aerodynamic model presented in
Section II as a perturbation model which

must be added to a more thorough a priori
model containing the primary Mach number
variation affects. The model used for
identification would thus include the
wind tunnel model used ior preflight

studies and would generate identical sim-
ulation results if all perturbation aero-

dynamic coefficients were set to zero.
The perturbation model coefficients remain
time invariant and yet should remain valid
over larger flight segments provided the
dominant Mach number trends are contained
in the wind tunnel data. This procedure
may require significant reprogramming
from vehicle to vehicle depending on the
particular forms of the wind tunnel models.

Each of these procedures, as well as certain combinations

of them,should be investigated using appropriate controlled

test cases. Such studies are recommended for future effort.



SECTION VI

AERODYNAMIC MODEL STRUCTURE IDENTIFICATION

BACKGROUND

The need for aerodynamic structure identification
arises when the form of the missile dynamic model is uncertain.

The design of an extended Kalman filter to estimate aerodynamic

coefficients is based upon a specific stochastic model for the
missile's motion. If this "filter model" is inconsistent with
actual missile behavior, poor aerodynamic coefficient estima-

tion accuracy ma. result. The objective of strutcurire identifi-

cation is to determine which model among a given class of models

best represents the physical system of interest. Thus, the

structure identification problem is one of approximation; i.e.,

determining which model within the given class best approxi-

mates the input-output response of the physical system. A
method has been developed for identifying model structure when
its uncertainty consists of several different models which

might be best or correct. This method, based upon hypothesis

testing theory, is demonstrated and evaluated in this chapter.

Further examples of structure identification using this method

are given in (Reference 16).

Structure identification is an important component of

system identification and parameter identification for the

following reasons:

0 If the chosen structure is too complex
(i.e., if too many parameters are in-

cluded in the model), estimates of the
relevant parameters (i.e., those param-
eters needed to described the system
response) will be degraded. This par-



t i culI ar difl i cu t1 Iy becomeýi severe when
the re is a limited amountlt 0 input-output
data available

0 If the structure chosen 'Is too simple
or incorrect . the phy.;icdl syst em can-
not be ado(quately repiesent,.cd Ior any
valtues ol the parameters in the, sewc ted
rilde I .

Rc searchers in the field of structure identification

have recognized the obvious t rade-of f thal exists betwein the

number of parameters used in a model , and the ability ot Thal

model to fit a givi\ti ,;ei of datla (References 17-19). Many of

the techniques currently in us( for selecting a model are based

upon lemt,:t squares Iits of modc-,l parameters to the data. The

mod,,l structure is chosen according to subc, re _tai stical

criteria which depend upon variables, such as "risk levels,"

that are specified in an ad hoc fashion. In addition, least

squares approaches are theoretically deficient in that they

are based upon certain assumptions about error statistics that

are rarely satisfied in practical problems of structure iden-

tification. When these assumptions are not satisfied, the

least squares estimates develop bias errors which can severely {

hinder the model selection process. I'

The motivation for The technique used here comes from b
previous work done in the parameter identification part of the

system identification problem. Least squares techniques were

initially employed for parameter identification due to their

relative ,-implicitvy however, they often produce biased, in-

accurate estimates. Subsequently, more accurate techniques

evolved such as maximum likelihood (e.g., as applied in Ref-

erence 20), ao.d the extended Kalman filter (References 2 and

12). Inaccurate results have also been observed from applica-

tion of least squares procedures to the structure identifica-

tion problem (References 21 and 22); specifically there is a
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tendency to select models having too many parameters. In this

chapter a new technique based upon extended Kalman filtering

is presented. It is used to obtain an improved solution to

the problem of structure identification applied to missile

aerodynamics.

The structure identification procedure used in this

study is illustrated in Figure 24. A number of hypotneses,

Hl H 2 ... H , are defined, where H is the hypotheses that

the model structure upon which the ith filter is based is best.

The choice of the set of hypotheses (or set of candidate mod-

els) is based upon the a priori information available about

the system to be identified. The best model structure can be

identified by operating n extended Kaiman filters in p1rallel,

as indicated in Figure 24, with each filter designed according

to one of the candidate models. At the same time it is pos-

sible to recursively compute the probability PHi that the ith

model is correct; making use of the filter state estimates

x. and the measurement data; the relative magnitudes of these

probabilities provide a basis for selecting the model which

best represents the data. The mathematical details of this

procedure are presented in Appendix B.

The remainder of this section presents a structure

identification study for an air-to-air missile. Several can-

didate models are selected, having different sets of aerody-

namic parameters. One of these models, the "truth model", is

used to generate synthetic measurement data. Extended Kalman

filters are then constructed based upon each of the candidate

models and used to process the measurement data. The prob-

ability that each model (each hypothesis) is the correct one

is computed using the structure identification algorithm.

The ability of this procedure to determine the correct system

model is demonstrated by a number of simulations.
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Figure 24. Functional Diagram of the Structure
Identification Algorithm

EXPERIMENTAL RESULTS

The experimental results presented in this section

are based upon the air-to-air missile model described in Sec-
tion V1. Three versions of this model are employed here as
truth models to generate synthetic measurement data. The

first has 11 aerodynamic coefficients, the second has 16
and the third 20. Table 31 lists the parameter values for
the three truth models. The control inputs, measurements,

noise sources, dynamic initial conditions, and other model
properties are the some as the model fully defined in Section

V. Note that Model 1 har- only linear aerodynamic parameters,
while Model 2 has five additional nonlinear parametf:rs, and

Model 3 has four more nornlinear parameters than Model 2.



TABLE 31. TRUTH MODEL PARAMETER VALUES

PARAITTER VALUES
PAT AIDTER 1 TjUTH MODEL 2 TRUTli MODEL 3

Cx -1.9q3 -1.993 -1,993
x0I

-3 .468 -42.12 -42.12

C -0.04880)5 -0.0409 -0.04006, r

C -42.120 -37.89 -37.89

S-0. 04092 -0.0388 -0.0371

c -i72.24 -166.1 -234.6

LC 3I7I 809 3.1591

c7%1 -10432.0 -9538,0 -10521. •
SCN 166.53 206c,6 205.17

CI6 -2.4914 -2.835 -2. 002

6r-*

C., -12892.0 -12391.0 -122-46.0

~N3

C 10.08 10.03

c -680.4 583 7

c -130.,

CN33 659.4 36.Z2

I

CMa~ 
.11

CN ,• -6 3,G v



Before proceeding with specific test cases it is im-

portant to emphasize the difference between the truth model

and filter mcdels in a given simulation. The truth model is

used to generate a specific set of synthetic measurements.

The filter model i3 the model upon which a particular filter

design is based. In each case, for a particular measurement

sequence, two or more extended Kalman filters are used to pro-

cess the data. Each of these filters is based upon one of the

models defined in Table 31. The outputs of these filters are

then compared by the structure identification algorithm to

determine which filter model best represents the truth model

used to generate the data. The initial parameter statistics

for the filters are given in Table 32. Other than these

initial statistics, tne filter design and impl.mVhtation are

the same as the nominal case described in Section V.

In the first test case of the structure identifica-

tion procedure, Model 1 is used to generate the synthetic mea-

surement Jata. Three hypotheses, Hi, H2 , and H13 are formulated

and defined with their corresponding probabilities as follows:

1. - Hypothesis that the ith filter model corre-
sponds to the truth model, for i =1, 2, and 3

PH - Probability that the hypothesis H. is true,
H given the measurement data. 1

To compute the three probabilities of interest, the measure-

ment data are processed independently by three extended Kalman

filters, each designed in accordance with a different hypoth-

esis (i.e., filter model). The estimates and error covariance

matrix of each filter are then used by the algorithm described

in Appendix B to compute the three hypothesis probabilities as

a function of time.
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TABLE 32. FILTER MODEL PARAMETER INITIAL STATISTICS

INITIAL INITIAL
MEAN STANDARD DEVIATION

PARAMETER ALL FILTER FILTER FILTER" ILIER

MODELS MODEL 1 MODEL 2- MODEL 3

C -1.63 0.4 0.4 0.4
x0

Cy5 -43.55 10.0 10.0 10.0

C -0.044 0.01 0.01 0.01

C -43.55 10.0 10.0 10.0
2

C -0.044 0.OJ 0.01 0.01Z6q

-200.53 0.0 50.0 5n.:s

C L 6q 2.9 0.7 0.7 0.7

C1i -12500.0 3000.0 3000.0 3000.0
q

C 200.55 50.0 50.0 50.0

-2.9 0.7 0.7 0.7

C -12500.0 3000.0 3000.0 3000.0

C0 .0 10.0 10 0

Cx2 0.0 10.0 i0.0 0

C M 3 0.0 , 1000.0 1000.0

cM 0.0 - 1000.00 1000.0
0N . 0 - 1000.0 1000.0

Cza 3  0.0 - 2. 0

C,1  0.0 -- '

CN0. O 0 - 1000. 0

CN -2 :r __ _ .__ __0 _ I- 10 .0

C 0.0 10.0

i



Figure 25 illustrates the result or the above pro-

cedure where the initial a priori probability of each hypoth-

esis is assumed to be one-third. Note that initially, the

probabilities remain constant and equal until approximately

one-half second into the flight. During this period, the

missile is in steady-ztate flight with zero control inputs,

(see Figures 14 and 15). This behavior indicates that the

data contains little or no information that can be used to

discriminate between the three hypolheses. At about one-hall

second the control input begins and the probability of the

correct hypothesis, P rapidly goes to 1.0 as the others

approacb zero.

For the sai• ,ema u.c -ienI"t da a as a b•ov, , two addi- -
tional cases were run using the structure identification pro-

cedure. Figure 26 illustrates the discrimination achieved

between hypothesis 11 and H2 and Figure 27 presents a similar

result for 111 and 113. In each case the correct hypothesis is

rapidly identified soon after the beginning of the missile

control input.

In a second case study, Mocdel 2 is used to generate

the measurement data, Figure 28 shows the results of the

structure identification procedure for the three hypotheses.

Note that the algorithm rapidly identifies the correct hypoth-

esis, H12" PH3 remains consistently higher than PH1 because

hypothesis H3 contains all of the parameters of H2 , whereas H1

conta'ns only a part of the parameter set needed for Model 2.

As a further illustration, Figure 29 shows the re-

sult of computing PHI and P1 3 from the Model 2 data. Note,

that in this case neitber hypothesis is correct. SInce,

however, filter Model 3 contains Model 2 as a subset, whereas

filter Model 1 does not, the probability calculation picks
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that hypothesis which best represents the actual data. This
demonstrates tha2 Probability tht tuonly select the con-

rect hypothesis if it exists; hut it tends to select the best

or most likely hypothesLs if the correct hypothesis is not known.

In the final test case, Model 3 is \used to generate

the measurements and the sanie three hypothese, are tested. ,

Figure 30 shows that again the correct hyp'othesis is rapidly

Identified.

The above results clearly demonstrate the ability of

the structure identitication p-ocedure to select the correct
system model when the data contains inforntatior that allows

the discrimination to be made. In practical cases, the tech-

nique can be used to evaluate the accuracy oi a serics of

models, none of which may adequntely described the systeni

1r.• ."
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Figure 30. Probability that Hi is True when
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which generates the data, The com putatioal cost of this

procedure is simply the cost of applying an EKF to the data

for each proposed model, since the probability calculations

require little additional computer effort.



SECTION VII

GBU-15 FLIGHT TEST DATA PROCESSING

BACKGROUND

The GBU-15 is a family of nonthrusting air-to-ground

standoff weapons launched from an aircraft and steered during

flight so as to impact a designated target. Among the GBU-15

family of modular glide weapons, the PWW (Planar Wing Weapon)
is characterized by a high aspect ratio swept wing, cruciform

tail and bottom mounted fin. Figur-e 31 gives the signifi-

cant physical characteristics of this airframe. Extensive

wind tunnel testing (over 250 hours) has been conducted in
order to determine the aerodynamic model for autopilot de-

sign and performance evaluation. In addition, flight tests

have been conducted to exercise the airframe throughout the

flight regime and to verify performance predictions.

The data required for modeling the GBU-15 was pro-
vided by AFATL and included mass, CG and inertia characteris-

tics, and the detailed wind tunnel aerodynamic model. This

wind ti.nuel model includes over 60 static and dynamic terms,
each of which requires a one-, two-, or three-dimensiolual table
lookup. In spite of the complexity of this model, compari-

sons of in-flight measurements with computer simulated mea-

surements show considerable discrepancy - particularly in
regions where the vehicle exhibits rapid dynamic motions.
Several configuration modifications were made after wind

tunnel testing which were not modeled by the wind tunnel data --

a telemetry antenna was located aft of the bottom mounted fin
and an a-ý boom was mounted in the nose of the vehicle.
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TECHNICAL DAIA

AIRFOIL SECTION - NACA 65.410 64.5
THEORETICAL WING AREA - 16.59 FT2

WING SPAN - 136.3 INCHES
WING CHORD - 18.48 IN. (STREAMWISE)
W1NG CHORD - 16.00 (CHOROWISE) 4,86 R 1.1

SWEEP ANGLE - 30 DEG
ASPECT RATIO - 7.74
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DIHEORAL ANGLE , -10 DEG
OVERALL LENGTH - 154.50 INCHES
TAIL SPAN - 56 INCHES A,- 30"
SWEEP ANGLE * 25 DEG ACCELEROMETER

II

FLIGHT TEST DESCRIPTION

All data from a single GBU-15 flight test was pro-

vided for use with the parameter identification algorithm

discussed previously. This flight test (AFATL designation

PPV-4) consists of a high altitude launch, followed by an

altitude hold segment, a maximum L/D glide segment, and a

rapid pitch down to a near vertical impact. Several roll

and yaw maneuvers were executed during the flight to verify

autopilot responses. In addition, two significant pitch

manleuvers occurred, one at the transition from altitudle hold

S~ to glide and another at the pitch down to impact.

CETRO RVT--*
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1

The flight test data consists of,

0 A data tape containing digitized telemetry
records from onboard instrumentation at
approximately a 20 hertz data rate

0 Atmospheric data from instruments
launched prior to flight test. This

data includes wind, temperature and
atmospheric density measurements as
functions of altitude

* Radar data processed by an AFATL software

package.

The GUU-15 onboard instrumentation included a

lateral accel-'ronietvr and normal accelerometer, three body-

fixed rate gyros, a free gyro indicating inertial roll and

heading. an i-ý boom, and control surface deflection sensors.

Information on accelerometer accuracy and a-ý boom wind

tunnel calibration wvas provided.

The smoothed radar data was produced by an AFATL

missile test range data processing package which utilized

the atmospheric data, together with various radar inputs,

to produce estimates ot missile trajectory characteristics.

Fixed interval smoothing methods were used to provide esti-

mates of position and velocity with respect to inertial

space and with respect to the relative air mass.

The telemetry data was plotted and visually in-

spected in order to determine segments suitable for aero-

dynamic parameter identification. Three scgmeutýi, ,,teh "f

about ten-see length, were selected based on !hL. Jvinimic

activity occurring during the trajectory. So].?ed tele-

metered flight measurements are given in Appendix C for

each of the three segments. Segment I includes a large

pitch maneuver at the transition to constant glide, Seg-

ment I1 includes a yaw maneuver with roll coupling, and
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Segment III occurs during the pitch cown to impact and in-

cludes a large pitch plane maneuver with some roll and yaw

activity. Table 33 summarizes the initial and final tra-
i

jectory characteristics from the radar data for each of the

three segments.

The wind magnitude and heading from the atmospheric

data are given in Figure 32. The three flight segments occur

at altitudes from 15,000 to 24,000 feet. During this period

the wind heading and magnitude are nearly constant with alti-

tude so that a constant wind magnitude of 50 knots with head-

ing of 305 degrees east of north was assumed. The missile

initial heading was 326.6 degrees east of north and radar

data indicates the heading was maintained closely throughout

the flight. Each flight segment was initialized with zero

initial heading, and with inertial wind approaching 21,6

degrees from the left at 50 knots. At nominal missile veloci-

ties, this lateral wind component can contribute about 3

degrees to the sideslip (whereas peak measured B values are

about 5 degrees). Thus, wind modeling should play a key roll

in the yaw plane representation.

TABLE 33. SUMMARY OF RADAR DATA PROCESSING
FOR THREE FLIGHT SEGMENTS

SLGMFNT I SFG1IENT I1 SEGMENT I I I
TRA. EC . . . " "

VARI ABI: 1-10 t0o ,- 0 t - , t - 10-

Altitude (ft) 23088 21752 19985 18148 19160 156(09

Iner'tial Velorltv

Wgn I tude (fps) 550 028 672 C.05 478 642

RQIatlvv velo¢cli
Magnitude (fpD) 623 692 747 767 552 676

Mach Number 0.601 0.659 0.706 0.719 0.520 0. -7

Flight Path
Angle (deg) -5.84 -30.426 -24.18 -S.3.2 -1R.28 *68.67
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The measured atmospheric temperature was used to

compute the actual values for speed of sound. A comparison

of these computed values and the standard atmosphere values

are given in Figure 33, as well as a comparison of measured

and standard air density. The standard values were used in
* the identification algorithm.

r

I~l
0 ~WIND MAGNITUDE -

LI

30,00 3 52 330 D4R35T-N

.WIND MAGCITUDE OF GNRTHde

3i 0 3r0 320 30 u40 W5 60I WIND DIRECTION EAST OF NORTH (clog)

SFigure 32. Measured W;ind Data for GBU-i5 Test Flight
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The GB3U-15 ma•,- pr'ope(rties consist of mass, CG

locat ion, and inrt 't n: , These data are given in 'Fable 34.

The lateral and nor'mal accelerometers are located near the

re'ar of the weapon at nn :iverlage locationl as shown inl thle

* Thc two H('celcromneters uro, actu'ally located albout 9 inches

apnart along the x-axis..1
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TABLE 34. GBU-15 AIRFRAME DATA

REQtIRED ARFRAME DATA GBt-15 VALUE

Mass (slugs) 88.354

x,y.z CG Location (in) 0,875, 0.0, -1.54

Roll Inertia slug-ft2) 119.38

Pitch Inertia (slug-ft ) 675.55
2

Yaw Inertia (slug-ft ) 747.42

x,yz Accelerometer Location(in) -55.93, 1.15, 1.65

table. Instrument and CG locations are given with respect

to the aerodynamic reference point in body vxes, defined in

Figure 31.

The a priori aerodynamic model for the GBU requires
a parameterization of the detailed tabular data provided by

AFATL, as well as the assignment of uncertainties to the re-

sulting parameter values. This simplified model was con-

structed based on discussions with aerodynamicists familiar

with the GBU-15, previous experience with winged aerodynamic

vehicles, inspection of the actual flight data and analysis

of the wind tunnel data.

A simplified EKF model was used for the initial

trials, assuming pitch aerodynamics to te decoupled from the

yaw and roll aerodynamics. Yaw and roll are known to be

highly coupled so that all linear yaw-roll aerodynamic el-

fects frequently encountered in aircraft are modeled (Ref-

erence 23). Additional parameters werf "-vestigated based

on the initial identification trials.

Figure 3-1 shows representative examples of the wind

tunnel data. Figures 34(a) and 34(g) demonstrate the complex
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nature of the aerodynamics for this vehicle. Only slight

coefficient variation with Mach number below 0.75 is evident,

* so that coefficient invariance with Mach number is reasonable

for Mach number ranges given in Table 34. The parameters

investigated in this study are given in Table 35 along with

the initial values and uncertainties.

The only measurements used for identification during

this study are the two accelerometers, three rate gyros and

the a-S sensors. A conservative initial estimate of measure-

ment noise was obtained by observation of the actual data.

These initial estimates were modified by inspection of the

EKF residual process. The accelerometer, rate gyro and a-ý

sensor noises were initially given by 2 ft/sec , 0.01 rad/sec

and 0.01 radian, respectively.

The force perturbation inputs (process noise) were
2

assigned values of 2 ft/sec The moment perturbation inputs

were given values representative of a 0.3-degree noise in con-

trol deflection measurement at a dynamic pressure of 250

It/fTT. All studies iL hiOs sectiont - assumed _ wirde-hbnd

(white) process noise input.

The transfer functions relating a and a to the con-

trol inputs 6 and 6 were computed from the mass properties
q r

and the aerodynamic coefficients. This "open loop airframe

response" indicates lightly damped pitch and yaw plane re-

sponses with damping ratios of approximately 0.18 and 0.08,

respectively, and a natural frequency of about 2.7 rad/sec in

both planes. Step responses from the 6-DOF a priori airframe

model correlated well with these computations.

The GBU-15 utilizes both accelerometer and pitch

rate feedback for stability agumentation. Well damped



TABLE 35. GBU-15 PARAMETER DATA

PARAMETER INITIAL VAL'.'E 'NCERTAINTY (•)

Cx -0.04 0.02

yu0.0 0.10

C -1.58 0.4".6
C 0.83 0. 15

Cz -0.28 0.1

Cz 6 q -0.42 O.I

CL 0.0 0.02
0CL 0.0 0.02

C 0.096 0.04CL

C-
6pC_ -0.45 1.0

0.16 0.40
r

C 0.03 0.20

C -0.3 0.1

-2.3 0.5
6q

CM -20.0 20.0

q
C N 0.0 0.003o
CN 0.120 0.03

C N -0.35 0. 10
6r

CN -0.66 1.0
r

CN -0.04 0.40

,All angles are expressed in radians.

responses to pitch and yaw plane acceleration comman•ds are

observed with settling times of about 1.5 and 2.5 seconds,

respectively. Some concerns have been expressed in the

literature about the identifiability of dynamic systems im-

bedded in closed loop systems (Reference 24), although studies

discussed in Reference 24 indicate successful identification

in systems operating in both open loop and closed loop modes.



No specific investigations into the effects of the closed

loops on identification of the GBU-15 was made; all measure-
ments result from the operational closed loop system.

IDENTIFICATION RESULTS

Initial identification tests were performed using
only ten measurement samples Lia order to isolate extreme a

priori modeling problems. During this stage the data rate

of 10 hertz (every other data point) was selected, dynamic
state initial conditions of each data segment were adjusted

and mep.surement noise levels were modified slightly from the

a priori values. The measurement levels assumed in the EKF
model are given in Table 36. After these initial trials, a

100-sample identification test was performed for each of the

three segments discussed previously. The 21 parameters in-
dicated on Table 35 were identified for each segment.

TABLE 36. ADJUSTED MEASUREMENT NOISE LEVELS

MEASUREMENT UNITS ERROR (ia)

Lateral Accelerometer ft/sec2 2.0
Normal Accelerometer ft/sec2  2.0

Roll Rate rcd/sec 0.02

Pitch Rate rad/sec 0.01

Yaw Rate rad/sec 0.01

a Sensor rad 0.005

8 Sensor rad 0,01
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The predicted and actual measurement comparisons,

the residual processes, and the predicted residual bounds

which occurred during parameter identification are shown in

Figures 35 through 37. The predicted/actual measurement com-

parison as shown in these figures must be interpreted care-

fully. If sufficient process noise is %njecte-.' into a dy- t
namic model, almost any set of parameter values may produce

an excellent predicted measurement/actual measurement com-

parison. In addition, the dynamics which generated these

measurements utilized time-varying parameters which resulted

during the course of parameter identification. A more con- 1
clusive demonstration of the ability of the final parameter

set to represent the data is given later. The final pararn-

eter estimate and the predicted standard devia.tions are shown

in Table 37. A

Because of the large angle-of-attach maneuvers during

data segments I and III, the pitch plane aerodynamics should

be highly observable. The pitch plane dynamics appear to be

modeled accurately as indicated by the normal acceleration.

pitch rate and angle-of.-attack residuals.

Large values of the correlation coelficients berxeEn

some parameters were observed, particularly between 'Uz, and

Sand between CMo and CM.. Segments I and III prodsud 11
Cz 0

correlation coefficients of 0.91 and 0.87, respectively,

between Czo and Czx. High correlations such as these make

interpretation of actual parameter values difficult since a

family of parameter values may produce near identical re;idua'

processes. The estia,,at? of CI( was consistent between the

two segments and showed a slightly positive value -- indJcat- L

ing a less stable airframe than predicted by wind tunnel data.
12
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Ii
Data segments I1 and III shoulO provide good param.-

eter observability for the coupled roll and yaw plancs. The

residual proceaaes irom these segments appear to indicate

modeling errors. Note, in particular, the low frequency com-

ponent exhabitedi in the k residual for segment II in Figure

36(g). A variety of attempts were made to improve the roll-

yaw model. The additional coupling terms indicated in Table

38 were investigated but little improvement wai found. Early

in the study some confusion arose in the correct signs of the

input control deflections, particularly 6r Ynd 6p. Switching

signs on these inputs produced no improvement. Figure ,37(g)

suggests the sign of the 8 sensor may be incorrect. Changing

this sign resulted in much better behavior of the B residual

as shown in Figure 38.

Several 'lactors may contribute to ".he nmodeling dif-

ficulties in the roll-,aw dynamics,

* The model assumed here may nct
accurately capture roll-yaw eifectr;.
The roll wind tunnl cat-a of Figure
34(g) supports this prem-ise.

• The initial parameter -values may not be
accurate enough to allow the filter to con-
ve:,ge to the correct values.

* The yaw-roll nraneuvers are of such low
amp'ii tude and frequency as to provide
little in-formation in the data about
the yaw-roll coefficients.

* Signs ci Oie measurements and/or control
deflections may be wrong.

¢2
It is not readily apparent from the data presented

thus ftr thwki the rodols resulting from parameter identifi-

cation offer an improvement over the a priori models. In

order to demonstrate that the collection of final parEm.eter

• a.
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estimates represents an improved model, two predicted mea-

surement profiles are presented -- one generated from the

initial, parameter values and a second from the final param-.

eter estimates. The irorovement in the agreement be-.ween
the actual measurement and predictea mweasurements is a mea-
sure of the knowledge gained through system idientification.

As demonstrated in Section V the initial condition
errors and process noise inputs prevent comparisons resulting
from a straightforward integration of the dynamics using the

initial and final parameter estimates. Several of the results

noted above z.ucggest that process noise plays a significant

role in the models which have been fit to the data. A method

of comparison which treats unknown initial conditions and pro--

cess noise consists of processing the measurement data vii',

the EKF with the parnmeters assumed known, i.e., no parameter

vector is augmented to the dyx.araic states. If the EKF is

exe-cised in this manner, first with initial parameter values

and then with final parameters, two measurement profiles are

obtained which can be compared with the actual measurement

data to show system model improvement.

The complete set of predicted measurements and re-

siduals from data Segment I generated by the EKF using param-

eter estimates fixed at their initial values, is shown by

Figure 39. These figures indicate considerable residual time-

correlation indicating definite system modeling errors. The

predicted measurements with fixed final parameter estimates

are given by Figure 40. The excellent improvement in the

residual processes demonstrates the increased modeling accu-

racy achieved with the parameter estimates obtained by the

parameter identif:ýcation algorithm. The initial and final

parameter values from Segments II and III xiere not compared

in this manner, though it is expected that a similar modeling

improvement would be indicated.
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SECTION VIII

CONCLUSIONS AND RECOMMENDATIONS

SUMMARY AND CONCLUSIONS

An extended Kalman filter algorithm for estimating

aerodynamic parameters from missile flight data has been de-

veloped and evaluated using both simulated and actual flight

test data. The algorithm includes a general purpose 6-DOF

missile airframe model suitable for representing a variety of

missile configurations. Airframe modeling includes the effects

of:

* Time-varying thrust profile

& Thrust variation with altitude

* Time-varying mass properties

* Standard atmospheric model

* Wind versus altitude profile

* Thrust misalignment

* CG offsets

a An extensive generalized aerodynamic
parameterization.

The extended Kalman filter requires inputs from

various flight data sensors. The measurement options inves-

tigated in this study are:

* Body-fixed rate gyros

* Body-fixed accelerometers

* Angle-of-attack and sideslip sensors



II

0 Position measurement

* Attitude measurements,

Algorithm verification studies and filter sensitiv-

ity studies have been performed using synthetic data from a

thrusting short range interceptor airframe model.. Filtering

performance variations resulting from various measurement

sets, measurement modeling errors and measurement noise levels

have been investigated. Aerodynamic representations consist-

ing of a low order "linear"' aerodynamic model as well as more

extensive nonlinear models including up to 36 aerodynamic

parameters were also studied. Conclusions resulting from the

verification and sensitivity studies are:

"* The extended Kalman filter is we~ll
suited as an aerodynamic parameter
identification tool for large scale
airframe modeling.

"* The computational burden -- both in core
size and computation time -- are not ex-
cessive for the realistically modeled
example discussed here.

An additional study was to be performed using synthetic

flight data provided by the Air Force Armament Laboratory.

This data was produced by a six-degrees-of-freedom interceptor

simulation developed independently from the model discussed

here. No parameter identification was performed as a result

of the large aerodynamic coefficient variations with Mach

number during the flight. All aerodynamic coefficients varied

on the order of 30 percent per second both durinfg boost and

during coast deceleration. Several recommended procedures for

aerodynamic parameter identification with large Mach number

variations are given in Section V.
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A structure identification algorith.'n also has been de-

veloped and evaluated using synthetic measurement data. This

algorithm, used in conjunction with. the parame'i.er Identifica-

tion algorithm, can select that model from a candidate family

of aerodynamic models which most likely produced the input

measurements. The capability of the structuie identificaation.

procedure is demonstrated by test cases in which the algorithm A

consistently and rapidly selects the correct model struc.ture

from three aerodynamic representations -- an 11-parameter X

model, a 16-parameter model, and a 20.-parwneter model..

The identification algorithm has been used to process

actual flight dAta from an aerodynamically controlled glide

weapon. This experiment provided an operational test of the
software and exercised all phases of the aerodynamic modeling
procedure. The following tasks were performed in preparation.
for parameter identification:

* Interfacing with the flight test agency
so that missile modeling data, flight
measurement tapes, radar data, etc. , could
be obtained, interpreted, and pieced in the
proper format required by the identification
software.

* An a priori airframe model for use in
parameter identification was developed.
Considerable simplification of tile com-
plex tabular aerodynamics was required.

* The flight data was vl.ially inspscacted to
isolate segments suitable for identification.
Measurement noises, procens noises and state
initial conditions were approximated for
three flight segments. Flexible data e.diting
and plotting capabilitivs were developed to
assist in this process.

Parameter identification of a 21-a-ramneter model was

performed for the three data segments. The re.sulting residual



process from the pitch plane measuremeits appeared well be-

havea --- indic-,ating pitch plane modeling to be adequate. The

roll and yaw planse measurement residuals indicated model de-
ficiencies in the coupled roll-yaw dynamics. Various attempts

to add additioii-.h parameters failed to improve the residual

behavior. Pcssible c.auses of these identification difficul-

ties are:

* Tne a priori model derived from the
wind tunnel data i s too simplistic. Com-
plex aerodynamic behavior can be seen in
the wind tunnel aerodynamic model, which
wz.s neglected in the a priori model used
for identification.

a The -airframne roll-yaw maneuvers during thethree se.•eCtod fldght ssegments way te too

low in amplit.-.pde and frequency to excite
the airframe dynamic modes sufficiently toallow separation of the aerodynamic effects
:romprocess and mneasurement noises.

a The paratmfters may be initialized incorrectly.
Large inltitl parameter errors together with
statistically inconsistent initial uncertainty
levels may not allow parameter estimates to
converge to the "correct" values.

* Sign errors in -ontrol deflection inputs,
and/or measurements may be present on the
input data.

Irrespective of the difficulties indicated above. 1

the overa).l (3BU-15 modeling exercise was encouraging,. A dem- .

onstration of modeling improvement after identification was
given for which the extended Kalma.n filter with parameters fixed

at their estimated values wa's used to process flight weasure-
ments. These results were compared to a simailar case where

the prraqieters were fixed at their initial values. A distinct
inodel irhprovement wass demcnstrated by comparing I he residual

process behavior from these two cases.
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RECOMMENDATI ONS

All studeies to date indicate that the EKF parameter

identification algorithm, together with the general purpcose

m,.•-i.e airfraune model and the structure identification soft-

ware, is a uselul tool for aerodynamic modeling fromi flight

data. Several recomruiendations for improvements and modiifica.- -

tios to the existing software are given below,

* Develop a well-documented, operational
sofytware package.

* Modify the software to allow identifica-
tion o missile airframnes during flight
segments containing large Mach number
variaitions. Specific recommendat ions
are given in Section V.

* Include t'he capability to estimate addi-
tional airframe param.ceters. such as CG
offsets, thr-ust misalignments, sensor
misalignments et-c.

* Add a ranx.om wind model and perform addi--
tional studies into the effects of wind
gusts.

Further study into (SbU.-15 parameter identi: ,i.cation

is also recomnended. A major omission in the GP.U-.15 data

processing effort was the fuilure to properly deo/el].op and

verify the a prior'i model used for parameter :tentiiication.

A miore extensive a priori model is required and the resultir;g

model should be verified against existing AFAJTL GBU-15 simu-

lations. This exercise would ensure a thoroogh understanding

of the significant Jfe.atures of the wind tunnel model and pro-

vide confidence in the overall accuracy of tne a priori model..
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APPENDIX A

IDPNTIFICATION ALGORITHM OUTPUT

This appendix presents selected plots of significant

variables computed during the parameter identification studies

of Section V. Five groups of figures are included. These
figures are:

A-i State estimation errors and predicted
one sigma bounds for the 11-parameter
nominal test case

A-2 Parameter estimation errors and predicted
one sigma bounds for the 11-parameter
nominal test case

A-3 Re.uidual process and residual one sigma
bounds from the 11-parameter nominal test
case

A-4 Parameter estimation errors and predicted
one sigma bounds from the 36-parameter test
case

A-5 Residual process and residual one sigma
bound for the 36-pararn test case

The solid lines shown on each figure represent tfe

one sigma bounds as predicted by the EKF. The vertical dashes -j

give the state error, parameter error or residual which oc-

curred at the particular time during filtering.
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APPENDIX B

STRUCTURE IDENTIFICATION USING THE
EXTENDED KALMAN FILTER

The structure identification technique used in this

study is based upon the extended Kalman filter and hypothesis

testing theory. A number of hypotheses, H1 , H2 .... Hn) are

defined; each are associated with a candidate model for the

system structure to be identified. 1i is the hypothesis that

the i th model best represents the system. The choice of the

set of hypotheses (or set of candidate model structures) is

based upon the a priori information available about the sy.tem.

The best model structure is th. t structure that best appro--i-

mates the input-output responsc of the system. This structure

is found by processing the measurement data independently with

n extended Kalman filters, as indicated in Figure B-1, with

each filter designed according to one of the candidate models

or hypotheses. It is then possible to recursively compute L.he

probability Pli that the ith model is best or correct, making

use of the filter state estimates, their filter computed co-

variances, and the measurement data. The rela.tive magnitudes

of these probabilities provide the basis for selecting the

model which best represents the data in a statistical sense.

The notation used in Figure B-i is defined as follows:

th
F Hypothesis that the i system modelSis correct

P 1 (k) Probability that the ith system model
i is correct given the measurements up

to and including zk
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MODE L I
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EKr 1 -H Il
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MODEL 2 PROBABILITY

. CALCULATION

L~BASED ON "•PHnlk)

MODEL

Figure B-1. Extended Kalman Filter Approach
to Structure Identification

The system output measurement at time,

z (-) The predicted value of z based upon ihe
-- data up to, but not lcYMding z, for the

EKF based upon the i model

r The one--,tep predicted measurement residualk• at the kUn step for the EKF associated with

the ith model.

The output of the ith extended Kalman filter immediately

prior to the k measurement is a state estimate xk(-) based upon

the first k-i measurements and knowledge of the past and current.

system input. This estimate is used to predict the value of the
kh measurement using the nonlinear system oultput equation for

the ith model, i e., L i(B1
The one step prediction residuals for the i h EKF are then givx:n

by:

=Z. - Zk(-) (B-2)
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and the residual covariance by:

.Cov j * Pk (-) H' + R' (B-3)Sk Lk K-k k k

where . Xk

H = ax i (B-4)C axk xI xk-)

and Pc(-) is the error covariance of x computed by the itha

filter.

A

The objective is t<. use the above filter outputs and

equations to compute the probability of each hypothesis. For

notational purposes, let:

Z } (B-5)

Appl)ng Bayes' rule, we can write:

ph. (k) I'( 17,k~)

- P(HizkZk i_

P(Zk!fiZk_) P(Hj 'Zj..)
-~1-1 I( kZk-i) ; {,

P(:IZk IF

n .

-* k 
tnR

thus,

P( 1"[li, Zk._I) P~l~" )
.(k)r (HB-

a x" P(Lklh~j Zh_: hE(:}j=:
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Based upon thi assumptions that the system which generates the

data is d-_ven only by known inputs and white noise and the

meas-reme.nts are corrupted only by zero mean white sequences,

then the residuals should be zero mean gaussian sequences if

thý. -N:K) 2i-arizat ion assumption is valid. In this case,

P(z- I-) -e (B-7)

ii)2 det S111

where M is the dimexnsion of the residual vector rk and Idet Si

denotes the absolute value of the determinate of the matrix S.

Equation B-6 is used recursively to compute the pro-

ability of each hypothesis H4 for i = 1, 2 ... n. It must be

initialized at assumed a priori values for the probability of

each hypothesis., i.e.,

P (G) P(EiI(no measurement)) (B-S)

for i = 1, 2, . n. Based on k measurements, the decision pro-

cedure involves selecting the model or hypothesis which has

the largest probability, PiH (k).

Several conunents can be made about the above procedur-e:

* The technique evaluates each model on the
ability of the associated EKF to predict
future observations (i.e., it is based up-
on the one-step prediction r.esiduals)

* The decision procedure is tot.ally objective



* The method provides a direct measurt of the
confidence levels {Pf (k)}. Furthermore,

the probability calculations are recursive,
so that considerable computational savings
can be incurred in cases where the algorithm
converges rapidly

* The technique treats the multiple hypotheses
problem directly

* In dealing with a large-scale system, one
can perform preliminary calculation,,- to
obtain insight as to the oraer of the sys-.
tem and thereby reduce the number of
models that need be considered. Even v'th
a large number of models, many of the
PHi(k)'s will quickly converge to zero so
that the associated models can be eliminated
from consTiheratIon inmmediate.l

The development of thc ex.tended Kalman fiii--
ter for the ith model is based on, the ks-
smnption that one can effectively linearize.-
the nonlinear functions abcut the state
estimates {41. littl is known about the
range of validity of this- assumption. -iow.-
ever, because of the generally good results
that have been obtained with cxYtend,L•a Kalmar.
filters. vis-a-vis other methods in jnar,-
eter 1'-%Al t.if iAtion i t is £It. 0la t

they will offer a significanat improvemenT
for st.ructure identificatLon.•.
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APPENDIX C

TELEMETRY DATA FROM A G03U-15 FLIGHT TEl'tT

The figures contained in thiP appendix represent

typical teleni-crry record.- used as input measurements for the

;system id:.ntification exercise performed with the ODU2,--15

standff .glide wea.n)on. Data frou Segments i. II and III as 1
defined in Section V11I are included. Selected records of

y- and z-a£xis accelerometers, pitch, yaw and roll rs.te gyros.

th1,. a.-B sensors, and ccimposite pitch, ya.w and roll tail] dt.-

f~nrtionn a'e shown. All digitized records are plotted at

19.438 hert.- aý Provided by AAI.L with data points connected .

by st.-aight lines. I
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TAC/IDI 'A 2 USN IVIAPNS LAB 1
TAC/XPSy 1 AMCMM- CT- E I
AFAL/AA 1 DPC2
AI:AL/IliM 1 CINCI'ACAI! iGFW I
AFAL/RIVI 1 AUTC/PP) 1
AI:AL/RW 3 ADTC/Tr: i
ASD/YiilV%. 1 AIYI7c/xi 2
ASD/XR(C 2 SOF/DR I
AS D/ YI I: 1 TAWC/ERW I
ASD/LNO 1 T.\WC/TX I

I~~~ I -1-/1

ASD/ENA I AtAtL/L
ASD)/YPLX 1 AFAT1./I)LMA 13
ASP/AEll 11 AE:ATi/D)LMI 5
ASD/AER 2 AFATL/DLNIM I
ASD/ENFE-A I AFATL/DLOU I

*ASD/SD 1 AFATL/DLY 2
ASD/SD7 2 AFATL/DLYA 1
ASD/SD)SEI I AFATI,/ LYW 1
ASD/SD27 2 AFATL/DLJT 1
AFFDL/FF 1 AFATL/ IJI1: 1

*AFFDL/l:GL 1 AFAT1I/DLJC 1
AFFI)L/ FX 1 AFATL/i:LIjA i
AFFDL/F\ I AFATL/DLODL.
AFML/MX 1 ADTC/SP) 1
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